MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvinop Structured version   Unicode version

Theorem eqvinop 4444
Description: A variable introduction law for ordered pairs. Analog of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.)
Hypotheses
Ref Expression
eqvinop.1  |-  B  e. 
_V
eqvinop.2  |-  C  e. 
_V
Assertion
Ref Expression
eqvinop  |-  ( A  =  <. B ,  C >.  <->  E. x E. y ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )
)
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem eqvinop
StepHypRef Expression
1 eqvinop.1 . . . . . . . 8  |-  B  e. 
_V
2 eqvinop.2 . . . . . . . 8  |-  C  e. 
_V
31, 2opth2 4441 . . . . . . 7  |-  ( <.
x ,  y >.  =  <. B ,  C >.  <-> 
( x  =  B  /\  y  =  C ) )
43anbi2i 677 . . . . . 6  |-  ( ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )  <->  ( A  =  <. x ,  y >.  /\  (
x  =  B  /\  y  =  C )
) )
5 ancom 439 . . . . . 6  |-  ( ( A  =  <. x ,  y >.  /\  (
x  =  B  /\  y  =  C )
)  <->  ( ( x  =  B  /\  y  =  C )  /\  A  =  <. x ,  y
>. ) )
6 anass 632 . . . . . 6  |-  ( ( ( x  =  B  /\  y  =  C )  /\  A  = 
<. x ,  y >.
)  <->  ( x  =  B  /\  ( y  =  C  /\  A  =  <. x ,  y
>. ) ) )
74, 5, 63bitri 264 . . . . 5  |-  ( ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )  <->  ( x  =  B  /\  ( y  =  C  /\  A  =  <. x ,  y >. )
) )
87exbii 1593 . . . 4  |-  ( E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  =  <. B ,  C >. )  <->  E. y
( x  =  B  /\  ( y  =  C  /\  A  = 
<. x ,  y >.
) ) )
9 19.42v 1929 . . . 4  |-  ( E. y ( x  =  B  /\  ( y  =  C  /\  A  =  <. x ,  y
>. ) )  <->  ( x  =  B  /\  E. y
( y  =  C  /\  A  =  <. x ,  y >. )
) )
10 opeq2 3987 . . . . . . 7  |-  ( y  =  C  ->  <. x ,  y >.  =  <. x ,  C >. )
1110eqeq2d 2449 . . . . . 6  |-  ( y  =  C  ->  ( A  =  <. x ,  y >.  <->  A  =  <. x ,  C >. )
)
122, 11ceqsexv 2993 . . . . 5  |-  ( E. y ( y  =  C  /\  A  = 
<. x ,  y >.
)  <->  A  =  <. x ,  C >. )
1312anbi2i 677 . . . 4  |-  ( ( x  =  B  /\  E. y ( y  =  C  /\  A  = 
<. x ,  y >.
) )  <->  ( x  =  B  /\  A  = 
<. x ,  C >. ) )
148, 9, 133bitri 264 . . 3  |-  ( E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  =  <. B ,  C >. )  <->  ( x  =  B  /\  A  = 
<. x ,  C >. ) )
1514exbii 1593 . 2  |-  ( E. x E. y ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )  <->  E. x ( x  =  B  /\  A  = 
<. x ,  C >. ) )
16 opeq1 3986 . . . 4  |-  ( x  =  B  ->  <. x ,  C >.  =  <. B ,  C >. )
1716eqeq2d 2449 . . 3  |-  ( x  =  B  ->  ( A  =  <. x ,  C >.  <->  A  =  <. B ,  C >. )
)
181, 17ceqsexv 2993 . 2  |-  ( E. x ( x  =  B  /\  A  = 
<. x ,  C >. )  <-> 
A  =  <. B ,  C >. )
1915, 18bitr2i 243 1  |-  ( A  =  <. B ,  C >.  <->  E. x E. y ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   _Vcvv 2958   <.cop 3819
This theorem is referenced by:  copsexg  4445  ralxpf  5022  oprabid  6108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825
  Copyright terms: Public domain W3C validator