Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2 Unicode version

Theorem erdsze2 24671
Description: Generalize the statement of the Erdős-Szekeres theorem erdsze 24668 to "sequences" indexed by an arbitrary subset of  RR, which can be infinite. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r  |-  ( ph  ->  R  e.  NN )
erdsze2.s  |-  ( ph  ->  S  e.  NN )
erdsze2.f  |-  ( ph  ->  F : A -1-1-> RR )
erdsze2.a  |-  ( ph  ->  A  C_  RR )
erdsze2.l  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  ( # `  A ) )
Assertion
Ref Expression
erdsze2  |-  ( ph  ->  E. s  e.  ~P  A ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
Distinct variable groups:    A, s    F, s    R, s    S, s    ph, s

Proof of Theorem erdsze2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 erdsze2.r . . 3  |-  ( ph  ->  R  e.  NN )
2 erdsze2.s . . 3  |-  ( ph  ->  S  e.  NN )
3 erdsze2.f . . 3  |-  ( ph  ->  F : A -1-1-> RR )
4 erdsze2.a . . 3  |-  ( ph  ->  A  C_  RR )
5 eqid 2388 . . 3  |-  ( ( R  -  1 )  x.  ( S  - 
1 ) )  =  ( ( R  - 
1 )  x.  ( S  -  1 ) )
6 erdsze2.l . . 3  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  <  ( # `  A ) )
71, 2, 3, 4, 5, 6erdsze2lem1 24669 . 2  |-  ( ph  ->  E. f ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )
81adantr 452 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  R  e.  NN )
92adantr 452 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  S  e.  NN )
103adantr 452 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  F : A -1-1-> RR )
114adantr 452 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  A  C_  RR )
126adantr 452 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  -> 
( ( R  - 
1 )  x.  ( S  -  1 ) )  <  ( # `  A ) )
13 simprl 733 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  -> 
f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  - 
1 ) )  +  1 ) ) -1-1-> A
)
14 simprr 734 . . 3  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  -> 
f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) )
158, 9, 10, 11, 5, 12, 13, 14erdsze2lem2 24670 . 2  |-  ( (
ph  /\  ( f : ( 1 ... ( ( ( R  -  1 )  x.  ( S  -  1 ) )  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... (
( ( R  - 
1 )  x.  ( S  -  1 ) )  +  1 ) ) ,  ran  f
) ) )  ->  E. s  e.  ~P  A ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
167, 15exlimddv 1645 1  |-  ( ph  ->  E. s  e.  ~P  A ( ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  <  ( s ,  ( F " s
) ) )  \/  ( S  <_  ( # `
 s )  /\  ( F  |`  s ) 
Isom  <  ,  `'  <  ( s ,  ( F
" s ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    e. wcel 1717   E.wrex 2651    C_ wss 3264   ~Pcpw 3743   class class class wbr 4154   `'ccnv 4818   ran crn 4820    |` cres 4821   "cima 4822   -1-1->wf1 5392   ` cfv 5395    Isom wiso 5396  (class class class)co 6021   RRcr 8923   1c1 8925    + caddc 8927    x. cmul 8929    < clt 9054    <_ cle 9055    - cmin 9224   NNcn 9933   ...cfz 10976   #chash 11546
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-nn 9934  df-n0 10155  df-z 10216  df-uz 10422  df-fz 10977  df-hash 11547
  Copyright terms: Public domain W3C validator