Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2lem1 Unicode version

Theorem erdsze2lem1 24670
Description: Lemma for erdsze2 24672. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r  |-  ( ph  ->  R  e.  NN )
erdsze2.s  |-  ( ph  ->  S  e.  NN )
erdsze2.f  |-  ( ph  ->  F : A -1-1-> RR )
erdsze2.a  |-  ( ph  ->  A  C_  RR )
erdsze2lem.n  |-  N  =  ( ( R  - 
1 )  x.  ( S  -  1 ) )
erdsze2lem.l  |-  ( ph  ->  N  <  ( # `  A ) )
Assertion
Ref Expression
erdsze2lem1  |-  ( ph  ->  E. f ( f : ( 1 ... ( N  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... ( N  +  1 ) ) ,  ran  f
) ) )
Distinct variable groups:    A, f    f, F    R, f    S, f   
f, N    ph, f

Proof of Theorem erdsze2lem1
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 erdsze2lem.n . . . . . . . . 9  |-  N  =  ( ( R  - 
1 )  x.  ( S  -  1 ) )
2 erdsze2.r . . . . . . . . . . 11  |-  ( ph  ->  R  e.  NN )
3 nnm1nn0 10195 . . . . . . . . . . 11  |-  ( R  e.  NN  ->  ( R  -  1 )  e.  NN0 )
42, 3syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( R  -  1 )  e.  NN0 )
5 erdsze2.s . . . . . . . . . . 11  |-  ( ph  ->  S  e.  NN )
6 nnm1nn0 10195 . . . . . . . . . . 11  |-  ( S  e.  NN  ->  ( S  -  1 )  e.  NN0 )
75, 6syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( S  -  1 )  e.  NN0 )
84, 7nn0mulcld 10213 . . . . . . . . 9  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  e.  NN0 )
91, 8syl5eqel 2473 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
10 peano2nn0 10194 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
11 hashfz1 11559 . . . . . . . 8  |-  ( ( N  +  1 )  e.  NN0  ->  ( # `  ( 1 ... ( N  +  1 ) ) )  =  ( N  +  1 ) )
129, 10, 113syl 19 . . . . . . 7  |-  ( ph  ->  ( # `  (
1 ... ( N  + 
1 ) ) )  =  ( N  + 
1 ) )
1312adantr 452 . . . . . 6  |-  ( (
ph  /\  A  e.  Fin )  ->  ( # `  ( 1 ... ( N  +  1 ) ) )  =  ( N  +  1 ) )
14 erdsze2lem.l . . . . . . . 8  |-  ( ph  ->  N  <  ( # `  A ) )
1514adantr 452 . . . . . . 7  |-  ( (
ph  /\  A  e.  Fin )  ->  N  < 
( # `  A ) )
16 hashcl 11568 . . . . . . . 8  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
NN0 )
17 nn0ltp1le 10266 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( # `  A )  e.  NN0 )  -> 
( N  <  ( # `
 A )  <->  ( N  +  1 )  <_ 
( # `  A ) ) )
189, 16, 17syl2an 464 . . . . . . 7  |-  ( (
ph  /\  A  e.  Fin )  ->  ( N  <  ( # `  A
)  <->  ( N  + 
1 )  <_  ( # `
 A ) ) )
1915, 18mpbid 202 . . . . . 6  |-  ( (
ph  /\  A  e.  Fin )  ->  ( N  +  1 )  <_ 
( # `  A ) )
2013, 19eqbrtrd 4175 . . . . 5  |-  ( (
ph  /\  A  e.  Fin )  ->  ( # `  ( 1 ... ( N  +  1 ) ) )  <_  ( # `
 A ) )
21 fzfid 11241 . . . . . 6  |-  ( (
ph  /\  A  e.  Fin )  ->  ( 1 ... ( N  + 
1 ) )  e. 
Fin )
22 simpr 448 . . . . . 6  |-  ( (
ph  /\  A  e.  Fin )  ->  A  e. 
Fin )
23 hashdom 11582 . . . . . 6  |-  ( ( ( 1 ... ( N  +  1 ) )  e.  Fin  /\  A  e.  Fin )  ->  ( ( # `  (
1 ... ( N  + 
1 ) ) )  <_  ( # `  A
)  <->  ( 1 ... ( N  +  1 ) )  ~<_  A ) )
2421, 22, 23syl2anc 643 . . . . 5  |-  ( (
ph  /\  A  e.  Fin )  ->  ( (
# `  ( 1 ... ( N  +  1 ) ) )  <_ 
( # `  A )  <-> 
( 1 ... ( N  +  1 ) )  ~<_  A ) )
2520, 24mpbid 202 . . . 4  |-  ( (
ph  /\  A  e.  Fin )  ->  ( 1 ... ( N  + 
1 ) )  ~<_  A )
26 simpr 448 . . . . . 6  |-  ( (
ph  /\  -.  A  e.  Fin )  ->  -.  A  e.  Fin )
27 fzfid 11241 . . . . . 6  |-  ( (
ph  /\  -.  A  e.  Fin )  ->  (
1 ... ( N  + 
1 ) )  e. 
Fin )
28 isinffi 7814 . . . . . 6  |-  ( ( -.  A  e.  Fin  /\  ( 1 ... ( N  +  1 ) )  e.  Fin )  ->  E. f  f : ( 1 ... ( N  +  1 ) ) -1-1-> A )
2926, 27, 28syl2anc 643 . . . . 5  |-  ( (
ph  /\  -.  A  e.  Fin )  ->  E. f 
f : ( 1 ... ( N  + 
1 ) ) -1-1-> A
)
30 erdsze2.a . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
31 reex 9016 . . . . . . . 8  |-  RR  e.  _V
32 ssexg 4292 . . . . . . . 8  |-  ( ( A  C_  RR  /\  RR  e.  _V )  ->  A  e.  _V )
3330, 31, 32sylancl 644 . . . . . . 7  |-  ( ph  ->  A  e.  _V )
3433adantr 452 . . . . . 6  |-  ( (
ph  /\  -.  A  e.  Fin )  ->  A  e.  _V )
35 brdomg 7056 . . . . . 6  |-  ( A  e.  _V  ->  (
( 1 ... ( N  +  1 ) )  ~<_  A  <->  E. f 
f : ( 1 ... ( N  + 
1 ) ) -1-1-> A
) )
3634, 35syl 16 . . . . 5  |-  ( (
ph  /\  -.  A  e.  Fin )  ->  (
( 1 ... ( N  +  1 ) )  ~<_  A  <->  E. f 
f : ( 1 ... ( N  + 
1 ) ) -1-1-> A
) )
3729, 36mpbird 224 . . . 4  |-  ( (
ph  /\  -.  A  e.  Fin )  ->  (
1 ... ( N  + 
1 ) )  ~<_  A )
3825, 37pm2.61dan 767 . . 3  |-  ( ph  ->  ( 1 ... ( N  +  1 ) )  ~<_  A )
39 domeng 7060 . . . 4  |-  ( A  e.  _V  ->  (
( 1 ... ( N  +  1 ) )  ~<_  A  <->  E. s
( ( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) ) )
4033, 39syl 16 . . 3  |-  ( ph  ->  ( ( 1 ... ( N  +  1 ) )  ~<_  A  <->  E. s
( ( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) ) )
4138, 40mpbid 202 . 2  |-  ( ph  ->  E. s ( ( 1 ... ( N  +  1 ) ) 
~~  s  /\  s  C_  A ) )
42 simprr 734 . . . . . 6  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  s  C_  A )
4330adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  A  C_  RR )
4442, 43sstrd 3303 . . . . 5  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  s  C_  RR )
45 ltso 9091 . . . . 5  |-  <  Or  RR
46 soss 4464 . . . . 5  |-  ( s 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  s ) )
4744, 45, 46ee10 1382 . . . 4  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  <  Or  s )
48 fzfid 11241 . . . . 5  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  (
1 ... ( N  + 
1 ) )  e. 
Fin )
49 simprl 733 . . . . . 6  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  (
1 ... ( N  + 
1 ) )  ~~  s )
50 enfi 7263 . . . . . 6  |-  ( ( 1 ... ( N  +  1 ) ) 
~~  s  ->  (
( 1 ... ( N  +  1 ) )  e.  Fin  <->  s  e.  Fin ) )
5149, 50syl 16 . . . . 5  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  (
( 1 ... ( N  +  1 ) )  e.  Fin  <->  s  e.  Fin ) )
5248, 51mpbid 202 . . . 4  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  s  e.  Fin )
53 fz1iso 11640 . . . 4  |-  ( (  <  Or  s  /\  s  e.  Fin )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )
5447, 52, 53syl2anc 643 . . 3  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( # `
 s ) ) ,  s ) )
55 isof1o 5986 . . . . . . . . . 10  |-  ( f 
Isom  <  ,  <  (
( 1 ... ( # `
 s ) ) ,  s )  -> 
f : ( 1 ... ( # `  s
) ) -1-1-onto-> s )
5655adantl 453 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  f : ( 1 ... ( # `  s
) ) -1-1-onto-> s )
57 hashen 11560 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... ( N  +  1 ) )  e.  Fin  /\  s  e.  Fin )  ->  ( ( # `  (
1 ... ( N  + 
1 ) ) )  =  ( # `  s
)  <->  ( 1 ... ( N  +  1 ) )  ~~  s
) )
5848, 52, 57syl2anc 643 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  (
( # `  ( 1 ... ( N  + 
1 ) ) )  =  ( # `  s
)  <->  ( 1 ... ( N  +  1 ) )  ~~  s
) )
5949, 58mpbird 224 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  ( # `
 ( 1 ... ( N  +  1 ) ) )  =  ( # `  s
) )
6012adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  ( # `
 ( 1 ... ( N  +  1 ) ) )  =  ( N  +  1 ) )
6159, 60eqtr3d 2423 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  ( # `
 s )  =  ( N  +  1 ) )
6261adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  ( # `
 s )  =  ( N  +  1 ) )
6362oveq2d 6038 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  (
1 ... ( # `  s
) )  =  ( 1 ... ( N  +  1 ) ) )
64 f1oeq2 5608 . . . . . . . . . 10  |-  ( ( 1 ... ( # `  s ) )  =  ( 1 ... ( N  +  1 ) )  ->  ( f : ( 1 ... ( # `  s
) ) -1-1-onto-> s  <->  f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> s ) )
6563, 64syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  (
f : ( 1 ... ( # `  s
) ) -1-1-onto-> s  <->  f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> s ) )
6656, 65mpbid 202 . . . . . . . 8  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> s )
67 f1of1 5615 . . . . . . . 8  |-  ( f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> s  ->  f : ( 1 ... ( N  +  1 ) ) -1-1-> s )
6866, 67syl 16 . . . . . . 7  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  f : ( 1 ... ( N  +  1 ) ) -1-1-> s )
69 simplrr 738 . . . . . . 7  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  s  C_  A )
70 f1ss 5586 . . . . . . 7  |-  ( ( f : ( 1 ... ( N  + 
1 ) ) -1-1-> s  /\  s  C_  A
)  ->  f :
( 1 ... ( N  +  1 ) ) -1-1-> A )
7168, 69, 70syl2anc 643 . . . . . 6  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  f : ( 1 ... ( N  +  1 ) ) -1-1-> A )
72 simpr 448 . . . . . . . 8  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  f  Isom  <  ,  <  (
( 1 ... ( # `
 s ) ) ,  s ) )
73 f1ofo 5623 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  s
) ) -1-1-onto-> s  ->  f : ( 1 ... ( # `
 s ) )
-onto-> s )
74 forn 5598 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  s
) ) -onto-> s  ->  ran  f  =  s
)
7556, 73, 743syl 19 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  ran  f  =  s )
76 isoeq5 5984 . . . . . . . . 9  |-  ( ran  f  =  s  -> 
( f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  ran  f )  <->  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) ) )
7775, 76syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( # `
 s ) ) ,  ran  f )  <-> 
f  Isom  <  ,  <  ( ( 1 ... ( # `
 s ) ) ,  s ) ) )
7872, 77mpbird 224 . . . . . . 7  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  f  Isom  <  ,  <  (
( 1 ... ( # `
 s ) ) ,  ran  f ) )
79 isoeq4 5983 . . . . . . . 8  |-  ( ( 1 ... ( # `  s ) )  =  ( 1 ... ( N  +  1 ) )  ->  ( f  Isom  <  ,  <  (
( 1 ... ( # `
 s ) ) ,  ran  f )  <-> 
f  Isom  <  ,  <  ( ( 1 ... ( N  +  1 ) ) ,  ran  f
) ) )
8063, 79syl 16 . . . . . . 7  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( # `
 s ) ) ,  ran  f )  <-> 
f  Isom  <  ,  <  ( ( 1 ... ( N  +  1 ) ) ,  ran  f
) ) )
8178, 80mpbid 202 . . . . . 6  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  f  Isom  <  ,  <  (
( 1 ... ( N  +  1 ) ) ,  ran  f
) )
8271, 81jca 519 . . . . 5  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  (
f : ( 1 ... ( N  + 
1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... ( N  +  1 ) ) ,  ran  f ) ) )
8382ex 424 . . . 4  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( # `
 s ) ) ,  s )  -> 
( f : ( 1 ... ( N  +  1 ) )
-1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... ( N  + 
1 ) ) ,  ran  f ) ) ) )
8483eximdv 1629 . . 3  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  ( E. f  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s )  ->  E. f
( f : ( 1 ... ( N  +  1 ) )
-1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... ( N  + 
1 ) ) ,  ran  f ) ) ) )
8554, 84mpd 15 . 2  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  E. f
( f : ( 1 ... ( N  +  1 ) )
-1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... ( N  + 
1 ) ) ,  ran  f ) ) )
8641, 85exlimddv 1645 1  |-  ( ph  ->  E. f ( f : ( 1 ... ( N  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... ( N  +  1 ) ) ,  ran  f
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   _Vcvv 2901    C_ wss 3265   class class class wbr 4155    Or wor 4445   ran crn 4821   -1-1->wf1 5393   -onto->wfo 5394   -1-1-onto->wf1o 5395   ` cfv 5396    Isom wiso 5397  (class class class)co 6022    ~~ cen 7044    ~<_ cdom 7045   Fincfn 7047   RRcr 8924   1c1 8926    + caddc 8928    x. cmul 8930    < clt 9055    <_ cle 9056    - cmin 9225   NNcn 9934   NN0cn0 10155   ...cfz 10977   #chash 11547
This theorem is referenced by:  erdsze2  24672
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-oi 7414  df-card 7761  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-n0 10156  df-z 10217  df-uz 10423  df-fz 10978  df-hash 11548
  Copyright terms: Public domain W3C validator