Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem7 Unicode version

Theorem erdszelem7 24331
Description: Lemma for erdsze 24336. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n  |-  ( ph  ->  N  e.  NN )
erdsze.f  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
erdszelem.k  |-  K  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
erdszelem.o  |-  O  Or  RR
erdszelem.a  |-  ( ph  ->  A  e.  ( 1 ... N ) )
erdszelem7.r  |-  ( ph  ->  R  e.  NN )
erdszelem7.m  |-  ( ph  ->  -.  ( K `  A )  e.  ( 1 ... ( R  -  1 ) ) )
Assertion
Ref Expression
erdszelem7  |-  ( ph  ->  E. s  e.  ~P  ( 1 ... N
) ( R  <_ 
( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) )
Distinct variable groups:    x, y,
s, F    K, s    A, s, x, y    O, s, x, y    R, s, x, y    N, s, x, y    ph, s, x, y
Allowed substitution hints:    K( x, y)

Proof of Theorem erdszelem7
StepHypRef Expression
1 hashf 11512 . . . 4  |-  # : _V
--> ( NN0  u.  {  +oo } )
2 ffun 5497 . . . 4  |-  ( # : _V --> ( NN0  u.  { 
+oo } )  ->  Fun  # )
31, 2ax-mp 8 . . 3  |-  Fun  #
4 erdszelem.a . . . 4  |-  ( ph  ->  A  e.  ( 1 ... N ) )
5 erdsze.n . . . . 5  |-  ( ph  ->  N  e.  NN )
6 erdsze.f . . . . 5  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
7 erdszelem.k . . . . 5  |-  K  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
8 erdszelem.o . . . . 5  |-  O  Or  RR
95, 6, 7, 8erdszelem5 24329 . . . 4  |-  ( (
ph  /\  A  e.  ( 1 ... N
) )  ->  ( K `  A )  e.  ( # " {
y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } ) )
104, 9mpdan 649 . . 3  |-  ( ph  ->  ( K `  A
)  e.  ( # " { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) } ) )
11 fvelima 5681 . . 3  |-  ( ( Fun  #  /\  ( K `  A )  e.  ( # " {
y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } ) )  ->  E. s  e.  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }  ( # `  s )  =  ( K `  A ) )
123, 10, 11sylancr 644 . 2  |-  ( ph  ->  E. s  e.  {
y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) }  ( # `
 s )  =  ( K `  A
) )
13 eqid 2366 . . . . . 6  |-  { y  e.  ~P ( 1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) }  =  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }
1413erdszelem1 24325 . . . . 5  |-  ( s  e.  { y  e. 
~P ( 1 ... A )  |  ( ( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  /\  A  e.  y ) }  <->  ( s  C_  ( 1 ... A
)  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) )  /\  A  e.  s ) )
15 simprl1 1001 . . . . . . . . 9  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  s  C_  ( 1 ... A
) )
16 elfzuz3 10948 . . . . . . . . . . 11  |-  ( A  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  A )
)
17 fzss2 10984 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( 1 ... A )  C_  ( 1 ... N
) )
184, 16, 173syl 18 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... A
)  C_  ( 1 ... N ) )
1918adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  (
1 ... A )  C_  ( 1 ... N
) )
2015, 19sstrd 3275 . . . . . . . 8  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  s  C_  ( 1 ... N
) )
21 vex 2876 . . . . . . . . 9  |-  s  e. 
_V
2221elpw 3720 . . . . . . . 8  |-  ( s  e.  ~P ( 1 ... N )  <->  s  C_  ( 1 ... N
) )
2320, 22sylibr 203 . . . . . . 7  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  s  e.  ~P ( 1 ... N ) )
24 erdszelem7.m . . . . . . . . . . 11  |-  ( ph  ->  -.  ( K `  A )  e.  ( 1 ... ( R  -  1 ) ) )
255, 6, 7, 8erdszelem6 24330 . . . . . . . . . . . . . . 15  |-  ( ph  ->  K : ( 1 ... N ) --> NN )
26 ffvelrn 5770 . . . . . . . . . . . . . . 15  |-  ( ( K : ( 1 ... N ) --> NN 
/\  A  e.  ( 1 ... N ) )  ->  ( K `  A )  e.  NN )
2725, 4, 26syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( K `  A
)  e.  NN )
28 nnuz 10414 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
2927, 28syl6eleq 2456 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K `  A
)  e.  ( ZZ>= ` 
1 ) )
30 erdszelem7.r . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  NN )
31 nnz 10196 . . . . . . . . . . . . . 14  |-  ( R  e.  NN  ->  R  e.  ZZ )
32 peano2zm 10213 . . . . . . . . . . . . . 14  |-  ( R  e.  ZZ  ->  ( R  -  1 )  e.  ZZ )
3330, 31, 323syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  ( R  -  1 )  e.  ZZ )
34 elfz5 10943 . . . . . . . . . . . . 13  |-  ( ( ( K `  A
)  e.  ( ZZ>= ` 
1 )  /\  ( R  -  1 )  e.  ZZ )  -> 
( ( K `  A )  e.  ( 1 ... ( R  -  1 ) )  <-> 
( K `  A
)  <_  ( R  -  1 ) ) )
3529, 33, 34syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( K `  A )  e.  ( 1 ... ( R  -  1 ) )  <-> 
( K `  A
)  <_  ( R  -  1 ) ) )
36 nnltlem1 10232 . . . . . . . . . . . . 13  |-  ( ( ( K `  A
)  e.  NN  /\  R  e.  NN )  ->  ( ( K `  A )  <  R  <->  ( K `  A )  <_  ( R  - 
1 ) ) )
3727, 30, 36syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( K `  A )  <  R  <->  ( K `  A )  <_  ( R  - 
1 ) ) )
3835, 37bitr4d 247 . . . . . . . . . . 11  |-  ( ph  ->  ( ( K `  A )  e.  ( 1 ... ( R  -  1 ) )  <-> 
( K `  A
)  <  R )
)
3924, 38mtbid 291 . . . . . . . . . 10  |-  ( ph  ->  -.  ( K `  A )  <  R
)
4030nnred 9908 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  RR )
4113erdszelem2 24326 . . . . . . . . . . . . . 14  |-  ( (
# " { y  e.  ~P ( 1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } )  e.  Fin  /\  ( #
" { y  e. 
~P ( 1 ... A )  |  ( ( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  /\  A  e.  y ) } ) 
C_  NN )
4241simpri 448 . . . . . . . . . . . . 13  |-  ( # " { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) } )  C_  NN
43 nnssre 9897 . . . . . . . . . . . . 13  |-  NN  C_  RR
4442, 43sstri 3274 . . . . . . . . . . . 12  |-  ( # " { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) } )  C_  RR
4544, 10sseldi 3264 . . . . . . . . . . 11  |-  ( ph  ->  ( K `  A
)  e.  RR )
4640, 45lenltd 9112 . . . . . . . . . 10  |-  ( ph  ->  ( R  <_  ( K `  A )  <->  -.  ( K `  A
)  <  R )
)
4739, 46mpbird 223 . . . . . . . . 9  |-  ( ph  ->  R  <_  ( K `  A ) )
4847adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  R  <_  ( K `  A
) )
49 simprr 733 . . . . . . . 8  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  ( # `
 s )  =  ( K `  A
) )
5048, 49breqtrrd 4151 . . . . . . 7  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  R  <_  ( # `  s
) )
51 simprl2 1002 . . . . . . 7  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F "
s ) ) )
5223, 50, 51jca32 521 . . . . . 6  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  (
s  e.  ~P (
1 ... N )  /\  ( R  <_  ( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F "
s ) ) ) ) )
5352expr 598 . . . . 5  |-  ( (
ph  /\  ( s  C_  ( 1 ... A
)  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) )  /\  A  e.  s ) )  -> 
( ( # `  s
)  =  ( K `
 A )  -> 
( s  e.  ~P ( 1 ... N
)  /\  ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) ) ) )
5414, 53sylan2b 461 . . . 4  |-  ( (
ph  /\  s  e.  { y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } )  ->  ( ( # `  s )  =  ( K `  A )  ->  ( s  e. 
~P ( 1 ... N )  /\  ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) ) ) )
5554expimpd 586 . . 3  |-  ( ph  ->  ( ( s  e. 
{ y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }  /\  ( # `
 s )  =  ( K `  A
) )  ->  (
s  e.  ~P (
1 ... N )  /\  ( R  <_  ( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F "
s ) ) ) ) ) )
5655reximdv2 2737 . 2  |-  ( ph  ->  ( E. s  e. 
{ y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }  ( # `  s )  =  ( K `  A )  ->  E. s  e.  ~P  ( 1 ... N
) ( R  <_ 
( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) ) )
5712, 56mpd 14 1  |-  ( ph  ->  E. s  e.  ~P  ( 1 ... N
) ( R  <_ 
( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   E.wrex 2629   {crab 2632   _Vcvv 2873    u. cun 3236    C_ wss 3238   ~Pcpw 3714   {csn 3729   class class class wbr 4125    e. cmpt 4179    Or wor 4416    |` cres 4794   "cima 4795   Fun wfun 5352   -->wf 5354   -1-1->wf1 5355   ` cfv 5358    Isom wiso 5359  (class class class)co 5981   Fincfn 7006   supcsup 7340   RRcr 8883   1c1 8885    +oocpnf 9011    < clt 9014    <_ cle 9015    - cmin 9184   NNcn 9893   NN0cn0 10114   ZZcz 10175   ZZ>=cuz 10381   ...cfz 10935   #chash 11505
This theorem is referenced by:  erdszelem11  24335
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-er 6802  df-map 6917  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-sup 7341  df-card 7719  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-n0 10115  df-z 10176  df-uz 10382  df-fz 10936  df-hash 11506
  Copyright terms: Public domain W3C validator