Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem7 Structured version   Unicode version

Theorem erdszelem7 24888
Description: Lemma for erdsze 24893. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n  |-  ( ph  ->  N  e.  NN )
erdsze.f  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
erdszelem.k  |-  K  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
erdszelem.o  |-  O  Or  RR
erdszelem.a  |-  ( ph  ->  A  e.  ( 1 ... N ) )
erdszelem7.r  |-  ( ph  ->  R  e.  NN )
erdszelem7.m  |-  ( ph  ->  -.  ( K `  A )  e.  ( 1 ... ( R  -  1 ) ) )
Assertion
Ref Expression
erdszelem7  |-  ( ph  ->  E. s  e.  ~P  ( 1 ... N
) ( R  <_ 
( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) )
Distinct variable groups:    x, y,
s, F    K, s    A, s, x, y    O, s, x, y    R, s, x, y    N, s, x, y    ph, s, x, y
Allowed substitution hints:    K( x, y)

Proof of Theorem erdszelem7
StepHypRef Expression
1 hashf 11630 . . . 4  |-  # : _V
--> ( NN0  u.  {  +oo } )
2 ffun 5596 . . . 4  |-  ( # : _V --> ( NN0  u.  { 
+oo } )  ->  Fun  # )
31, 2ax-mp 5 . . 3  |-  Fun  #
4 erdszelem.a . . . 4  |-  ( ph  ->  A  e.  ( 1 ... N ) )
5 erdsze.n . . . . 5  |-  ( ph  ->  N  e.  NN )
6 erdsze.f . . . . 5  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
7 erdszelem.k . . . . 5  |-  K  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
8 erdszelem.o . . . . 5  |-  O  Or  RR
95, 6, 7, 8erdszelem5 24886 . . . 4  |-  ( (
ph  /\  A  e.  ( 1 ... N
) )  ->  ( K `  A )  e.  ( # " {
y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } ) )
104, 9mpdan 651 . . 3  |-  ( ph  ->  ( K `  A
)  e.  ( # " { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) } ) )
11 fvelima 5781 . . 3  |-  ( ( Fun  #  /\  ( K `  A )  e.  ( # " {
y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } ) )  ->  E. s  e.  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }  ( # `  s )  =  ( K `  A ) )
123, 10, 11sylancr 646 . 2  |-  ( ph  ->  E. s  e.  {
y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) }  ( # `
 s )  =  ( K `  A
) )
13 eqid 2438 . . . . . 6  |-  { y  e.  ~P ( 1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) }  =  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }
1413erdszelem1 24882 . . . . 5  |-  ( s  e.  { y  e. 
~P ( 1 ... A )  |  ( ( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  /\  A  e.  y ) }  <->  ( s  C_  ( 1 ... A
)  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) )  /\  A  e.  s ) )
15 simprl1 1003 . . . . . . . . 9  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  s  C_  ( 1 ... A
) )
16 elfzuz3 11061 . . . . . . . . . . 11  |-  ( A  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  A )
)
17 fzss2 11097 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( 1 ... A )  C_  ( 1 ... N
) )
184, 16, 173syl 19 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... A
)  C_  ( 1 ... N ) )
1918adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  (
1 ... A )  C_  ( 1 ... N
) )
2015, 19sstrd 3360 . . . . . . . 8  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  s  C_  ( 1 ... N
) )
21 vex 2961 . . . . . . . . 9  |-  s  e. 
_V
2221elpw 3807 . . . . . . . 8  |-  ( s  e.  ~P ( 1 ... N )  <->  s  C_  ( 1 ... N
) )
2320, 22sylibr 205 . . . . . . 7  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  s  e.  ~P ( 1 ... N ) )
24 erdszelem7.m . . . . . . . . . . 11  |-  ( ph  ->  -.  ( K `  A )  e.  ( 1 ... ( R  -  1 ) ) )
255, 6, 7, 8erdszelem6 24887 . . . . . . . . . . . . . . 15  |-  ( ph  ->  K : ( 1 ... N ) --> NN )
2625, 4ffvelrnd 5874 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( K `  A
)  e.  NN )
27 nnuz 10526 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
2826, 27syl6eleq 2528 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K `  A
)  e.  ( ZZ>= ` 
1 ) )
29 erdszelem7.r . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  NN )
30 nnz 10308 . . . . . . . . . . . . . 14  |-  ( R  e.  NN  ->  R  e.  ZZ )
31 peano2zm 10325 . . . . . . . . . . . . . 14  |-  ( R  e.  ZZ  ->  ( R  -  1 )  e.  ZZ )
3229, 30, 313syl 19 . . . . . . . . . . . . 13  |-  ( ph  ->  ( R  -  1 )  e.  ZZ )
33 elfz5 11056 . . . . . . . . . . . . 13  |-  ( ( ( K `  A
)  e.  ( ZZ>= ` 
1 )  /\  ( R  -  1 )  e.  ZZ )  -> 
( ( K `  A )  e.  ( 1 ... ( R  -  1 ) )  <-> 
( K `  A
)  <_  ( R  -  1 ) ) )
3428, 32, 33syl2anc 644 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( K `  A )  e.  ( 1 ... ( R  -  1 ) )  <-> 
( K `  A
)  <_  ( R  -  1 ) ) )
35 nnltlem1 10344 . . . . . . . . . . . . 13  |-  ( ( ( K `  A
)  e.  NN  /\  R  e.  NN )  ->  ( ( K `  A )  <  R  <->  ( K `  A )  <_  ( R  - 
1 ) ) )
3626, 29, 35syl2anc 644 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( K `  A )  <  R  <->  ( K `  A )  <_  ( R  - 
1 ) ) )
3734, 36bitr4d 249 . . . . . . . . . . 11  |-  ( ph  ->  ( ( K `  A )  e.  ( 1 ... ( R  -  1 ) )  <-> 
( K `  A
)  <  R )
)
3824, 37mtbid 293 . . . . . . . . . 10  |-  ( ph  ->  -.  ( K `  A )  <  R
)
3929nnred 10020 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  RR )
4013erdszelem2 24883 . . . . . . . . . . . . . 14  |-  ( (
# " { y  e.  ~P ( 1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } )  e.  Fin  /\  ( #
" { y  e. 
~P ( 1 ... A )  |  ( ( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  /\  A  e.  y ) } ) 
C_  NN )
4140simpri 450 . . . . . . . . . . . . 13  |-  ( # " { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) } )  C_  NN
42 nnssre 10009 . . . . . . . . . . . . 13  |-  NN  C_  RR
4341, 42sstri 3359 . . . . . . . . . . . 12  |-  ( # " { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) } )  C_  RR
4443, 10sseldi 3348 . . . . . . . . . . 11  |-  ( ph  ->  ( K `  A
)  e.  RR )
4539, 44lenltd 9224 . . . . . . . . . 10  |-  ( ph  ->  ( R  <_  ( K `  A )  <->  -.  ( K `  A
)  <  R )
)
4638, 45mpbird 225 . . . . . . . . 9  |-  ( ph  ->  R  <_  ( K `  A ) )
4746adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  R  <_  ( K `  A
) )
48 simprr 735 . . . . . . . 8  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  ( # `
 s )  =  ( K `  A
) )
4947, 48breqtrrd 4241 . . . . . . 7  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  R  <_  ( # `  s
) )
50 simprl2 1004 . . . . . . 7  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F "
s ) ) )
5123, 49, 50jca32 523 . . . . . 6  |-  ( (
ph  /\  ( (
s  C_  ( 1 ... A )  /\  ( F  |`  s ) 
Isom  <  ,  O  ( s ,  ( F
" s ) )  /\  A  e.  s )  /\  ( # `  s )  =  ( K `  A ) ) )  ->  (
s  e.  ~P (
1 ... N )  /\  ( R  <_  ( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F "
s ) ) ) ) )
5251expr 600 . . . . 5  |-  ( (
ph  /\  ( s  C_  ( 1 ... A
)  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) )  /\  A  e.  s ) )  -> 
( ( # `  s
)  =  ( K `
 A )  -> 
( s  e.  ~P ( 1 ... N
)  /\  ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) ) ) )
5314, 52sylan2b 463 . . . 4  |-  ( (
ph  /\  s  e.  { y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } )  ->  ( ( # `  s )  =  ( K `  A )  ->  ( s  e. 
~P ( 1 ... N )  /\  ( R  <_  ( # `  s
)  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) ) ) )
5453expimpd 588 . . 3  |-  ( ph  ->  ( ( s  e. 
{ y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }  /\  ( # `
 s )  =  ( K `  A
) )  ->  (
s  e.  ~P (
1 ... N )  /\  ( R  <_  ( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F "
s ) ) ) ) ) )
5554reximdv2 2817 . 2  |-  ( ph  ->  ( E. s  e. 
{ y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }  ( # `  s )  =  ( K `  A )  ->  E. s  e.  ~P  ( 1 ... N
) ( R  <_ 
( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) ) )
5612, 55mpd 15 1  |-  ( ph  ->  E. s  e.  ~P  ( 1 ... N
) ( R  <_ 
( # `  s )  /\  ( F  |`  s )  Isom  <  ,  O  ( s ,  ( F " s
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   E.wrex 2708   {crab 2711   _Vcvv 2958    u. cun 3320    C_ wss 3322   ~Pcpw 3801   {csn 3816   class class class wbr 4215    e. cmpt 4269    Or wor 4505    |` cres 4883   "cima 4884   Fun wfun 5451   -->wf 5453   -1-1->wf1 5454   ` cfv 5457    Isom wiso 5458  (class class class)co 6084   Fincfn 7112   supcsup 7448   RRcr 8994   1c1 8996    +oocpnf 9122    < clt 9125    <_ cle 9126    - cmin 9296   NNcn 10005   NN0cn0 10226   ZZcz 10287   ZZ>=cuz 10493   ...cfz 11048   #chash 11623
This theorem is referenced by:  erdszelem11  24892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227  df-z 10288  df-uz 10494  df-fz 11049  df-hash 11624
  Copyright terms: Public domain W3C validator