Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem8 Unicode version

Theorem erdszelem8 23744
Description: Lemma for erdsze 23748. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n  |-  ( ph  ->  N  e.  NN )
erdsze.f  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
erdszelem.k  |-  K  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
erdszelem.o  |-  O  Or  RR
erdszelem.a  |-  ( ph  ->  A  e.  ( 1 ... N ) )
erdszelem.b  |-  ( ph  ->  B  e.  ( 1 ... N ) )
erdszelem.l  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
erdszelem8  |-  ( ph  ->  ( ( K `  A )  =  ( K `  B )  ->  -.  ( F `  A ) O ( F `  B ) ) )
Distinct variable groups:    x, y, B    x, F, y    x, A, y    x, O, y   
x, N, y    ph, x, y
Allowed substitution hints:    K( x, y)

Proof of Theorem erdszelem8
Dummy variables  w  f  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashf 11360 . . . . 5  |-  # : _V
--> ( NN0  u.  {  +oo } )
2 ffun 5407 . . . . 5  |-  ( # : _V --> ( NN0  u.  { 
+oo } )  ->  Fun  # )
31, 2ax-mp 8 . . . 4  |-  Fun  #
4 erdszelem.a . . . . 5  |-  ( ph  ->  A  e.  ( 1 ... N ) )
5 erdsze.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
6 erdsze.f . . . . . 6  |-  ( ph  ->  F : ( 1 ... N ) -1-1-> RR )
7 erdszelem.k . . . . . 6  |-  K  =  ( x  e.  ( 1 ... N ) 
|->  sup ( ( # " { y  e.  ~P ( 1 ... x
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  x  e.  y ) } ) ,  RR ,  <  )
)
8 erdszelem.o . . . . . 6  |-  O  Or  RR
95, 6, 7, 8erdszelem5 23741 . . . . 5  |-  ( (
ph  /\  A  e.  ( 1 ... N
) )  ->  ( K `  A )  e.  ( # " {
y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } ) )
104, 9mpdan 649 . . . 4  |-  ( ph  ->  ( K `  A
)  e.  ( # " { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) } ) )
11 fvelima 5590 . . . 4  |-  ( ( Fun  #  /\  ( K `  A )  e.  ( # " {
y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } ) )  ->  E. f  e.  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }  ( # `  f )  =  ( K `  A ) )
123, 10, 11sylancr 644 . . 3  |-  ( ph  ->  E. f  e.  {
y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) }  ( # `
 f )  =  ( K `  A
) )
13 eqid 2296 . . . . . 6  |-  { y  e.  ~P ( 1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) }  =  { y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }
1413erdszelem1 23737 . . . . 5  |-  ( f  e.  { y  e. 
~P ( 1 ... A )  |  ( ( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  /\  A  e.  y ) }  <->  ( f  C_  ( 1 ... A
)  /\  ( F  |`  f )  Isom  <  ,  O  ( f ,  ( F " f
) )  /\  A  e.  f ) )
15 fzfid 11051 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( 1 ... A
)  e.  Fin )
16 simplr1 997 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
f  C_  ( 1 ... A ) )
17 ssfi 7099 . . . . . . . . . . 11  |-  ( ( ( 1 ... A
)  e.  Fin  /\  f  C_  ( 1 ... A ) )  -> 
f  e.  Fin )
1815, 16, 17syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
f  e.  Fin )
19 hashcl 11366 . . . . . . . . . 10  |-  ( f  e.  Fin  ->  ( # `
 f )  e. 
NN0 )
2018, 19syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( # `  f )  e.  NN0 )
2120nn0red 10035 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( # `  f )  e.  RR )
22 eqid 2296 . . . . . . . . . . . . . . 15  |-  { y  e.  ~P ( 1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) }  =  { y  e.  ~P ( 1 ... B
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  B  e.  y ) }
2322erdszelem2 23738 . . . . . . . . . . . . . 14  |-  ( (
# " { y  e.  ~P ( 1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } )  e.  Fin  /\  ( #
" { y  e. 
~P ( 1 ... B )  |  ( ( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  /\  B  e.  y ) } ) 
C_  NN )
2423simpri 448 . . . . . . . . . . . . 13  |-  ( # " { y  e.  ~P ( 1 ... B
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  B  e.  y ) } )  C_  NN
25 nnssre 9766 . . . . . . . . . . . . 13  |-  NN  C_  RR
2624, 25sstri 3201 . . . . . . . . . . . 12  |-  ( # " { y  e.  ~P ( 1 ... B
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  B  e.  y ) } )  C_  RR
2726a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( # " { y  e.  ~P ( 1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } ) 
C_  RR )
28 erdszelem.l . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  <  B )
29 elfznn 10835 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  ( 1 ... N )  ->  A  e.  NN )
304, 29syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A  e.  NN )
3130nnred 9777 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A  e.  RR )
32 erdszelem.b . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  B  e.  ( 1 ... N ) )
33 elfznn 10835 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  ( 1 ... N )  ->  B  e.  NN )
3432, 33syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  B  e.  NN )
3534nnred 9777 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  B  e.  RR )
3631, 35ltnled 8982 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( A  <  B  <->  -.  B  <_  A )
)
3728, 36mpbid 201 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  -.  B  <_  A
)
38 elfzle2 10816 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  ( 1 ... A )  ->  B  <_  A )
3937, 38nsyl 113 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  -.  B  e.  ( 1 ... A ) )
4039ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  -.  B  e.  (
1 ... A ) )
4116sseld 3192 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( B  e.  f  ->  B  e.  ( 1 ... A ) ) )
4240, 41mtod 168 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  -.  B  e.  f
)
4332ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  B  e.  ( 1 ... N ) )
44 hashunsng 11383 . . . . . . . . . . . . . . 15  |-  ( B  e.  ( 1 ... N )  ->  (
( f  e.  Fin  /\ 
-.  B  e.  f )  ->  ( # `  (
f  u.  { B } ) )  =  ( ( # `  f
)  +  1 ) ) )
4543, 44syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( ( f  e. 
Fin  /\  -.  B  e.  f )  ->  ( # `
 ( f  u. 
{ B } ) )  =  ( (
# `  f )  +  1 ) ) )
4618, 42, 45mp2and 660 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( # `  ( f  u.  { B }
) )  =  ( ( # `  f
)  +  1 ) )
47 elfzelz 10814 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  ( 1 ... N )  ->  A  e.  ZZ )
484, 47syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A  e.  ZZ )
49 elfzelz 10814 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  ( 1 ... N )  ->  B  e.  ZZ )
5032, 49syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  B  e.  ZZ )
5131, 35, 28ltled 8983 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A  <_  B )
52 eluz2 10252 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  ( ZZ>= `  A
)  <->  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <_  B ) )
5348, 50, 51, 52syl3anbrc 1136 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  B  e.  ( ZZ>= `  A ) )
54 fzss2 10847 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( 1 ... A )  C_  ( 1 ... B
) )
5553, 54syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1 ... A
)  C_  ( 1 ... B ) )
5655ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( 1 ... A
)  C_  ( 1 ... B ) )
5716, 56sstrd 3202 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
f  C_  ( 1 ... B ) )
58 elfz1end 10836 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  NN  <->  B  e.  ( 1 ... B
) )
5934, 58sylib 188 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  B  e.  ( 1 ... B ) )
6059ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  B  e.  ( 1 ... B ) )
6160snssd 3776 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  { B }  C_  (
1 ... B ) )
6257, 61unssd 3364 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( f  u.  { B } )  C_  (
1 ... B ) )
63 simplr2 998 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( F  |`  f
)  Isom  <  ,  O  ( f ,  ( F " f ) ) )
64 f1f 5453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( F : ( 1 ... N ) -1-1-> RR  ->  F : ( 1 ... N ) --> RR )
656, 64syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  F : ( 1 ... N ) --> RR )
6665ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  F : ( 1 ... N ) --> RR )
67 elfzuz3 10811 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  A )
)
68 fzss2 10847 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  ( ZZ>= `  A
)  ->  ( 1 ... A )  C_  ( 1 ... N
) )
694, 67, 683syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 1 ... A
)  C_  ( 1 ... N ) )
7069ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( 1 ... A
)  C_  ( 1 ... N ) )
7116, 70sstrd 3202 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
f  C_  ( 1 ... N ) )
72 fzssuz 10848 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 1 ... N )  C_  ( ZZ>= `  1 )
73 uzssz 10263 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ZZ>= ` 
1 )  C_  ZZ
74 zssre 10047 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ZZ  C_  RR
7573, 74sstri 3201 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ZZ>= ` 
1 )  C_  RR
7672, 75sstri 3201 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1 ... N )  C_  RR
77 ltso 8919 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  <  Or  RR
78 soss 4348 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1 ... N ) 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  ( 1 ... N
) ) )
7976, 77, 78mp2 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  <  Or  ( 1 ... N
)
80 soisores 5840 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  <  Or  (
1 ... N )  /\  O  Or  RR )  /\  ( F : ( 1 ... N ) --> RR  /\  f  C_  ( 1 ... N
) ) )  -> 
( ( F  |`  f )  Isom  <  ,  O  ( f ,  ( F " f
) )  <->  A. z  e.  f  A. w  e.  f  ( z  <  w  ->  ( F `  z ) O ( F `  w ) ) ) )
8179, 8, 80mpanl12 663 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F : ( 1 ... N ) --> RR 
/\  f  C_  (
1 ... N ) )  ->  ( ( F  |`  f )  Isom  <  ,  O  ( f ,  ( F " f
) )  <->  A. z  e.  f  A. w  e.  f  ( z  <  w  ->  ( F `  z ) O ( F `  w ) ) ) )
8266, 71, 81syl2anc 642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( ( F  |`  f )  Isom  <  ,  O  ( f ,  ( F " f
) )  <->  A. z  e.  f  A. w  e.  f  ( z  <  w  ->  ( F `  z ) O ( F `  w ) ) ) )
8363, 82mpbid 201 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  A. z  e.  f  A. w  e.  f 
( z  <  w  ->  ( F `  z
) O ( F `
 w ) ) )
8483r19.21bi 2654 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  A. w  e.  f  ( z  <  w  ->  ( F `  z
) O ( F `
 w ) ) )
8516sselda 3193 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  z  e.  ( 1 ... A ) )
86 elfzle2 10816 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  e.  ( 1 ... A )  ->  z  <_  A )
8785, 86syl 15 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  z  <_  A )
8871sselda 3193 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  z  e.  ( 1 ... N ) )
8976, 88sseldi 3191 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  z  e.  RR )
904ad3antrrr 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  A  e.  ( 1 ... N ) )
9190, 29syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  A  e.  NN )
9291nnred 9777 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  A  e.  RR )
9389, 92lenltd 8981 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  ( z  <_  A  <->  -.  A  <  z ) )
9487, 93mpbid 201 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  -.  A  <  z
)
9563adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  ( F  |`  f
)  Isom  <  ,  O  ( f ,  ( F " f ) ) )
96 simplr3 999 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  A  e.  f )
9796adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  A  e.  f )
98 simpr 447 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  z  e.  f )
99 isorel 5839 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( F  |`  f
)  Isom  <  ,  O  ( f ,  ( F " f ) )  /\  ( A  e.  f  /\  z  e.  f ) )  -> 
( A  <  z  <->  ( ( F  |`  f
) `  A ) O ( ( F  |`  f ) `  z
) ) )
100 fvres 5558 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( A  e.  f  ->  (
( F  |`  f
) `  A )  =  ( F `  A ) )
101 fvres 5558 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( z  e.  f  ->  (
( F  |`  f
) `  z )  =  ( F `  z ) )
102100, 101breqan12d 4054 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  f  /\  z  e.  f )  ->  ( ( ( F  |`  f ) `  A
) O ( ( F  |`  f ) `  z )  <->  ( F `  A ) O ( F `  z ) ) )
103102adantl 452 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( F  |`  f
)  Isom  <  ,  O  ( f ,  ( F " f ) )  /\  ( A  e.  f  /\  z  e.  f ) )  -> 
( ( ( F  |`  f ) `  A
) O ( ( F  |`  f ) `  z )  <->  ( F `  A ) O ( F `  z ) ) )
10499, 103bitrd 244 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( F  |`  f
)  Isom  <  ,  O  ( f ,  ( F " f ) )  /\  ( A  e.  f  /\  z  e.  f ) )  -> 
( A  <  z  <->  ( F `  A ) O ( F `  z ) ) )
10595, 97, 98, 104syl12anc 1180 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  ( A  <  z  <->  ( F `  A ) O ( F `  z ) ) )
10694, 105mtbid 291 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  -.  ( F `  A ) O ( F `  z ) )
107 simplr 731 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  ( F `  A
) O ( F `
 B ) )
10866adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  F : ( 1 ... N ) --> RR )
109 ffvelrn 5679 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F : ( 1 ... N ) --> RR 
/\  z  e.  ( 1 ... N ) )  ->  ( F `  z )  e.  RR )
110108, 88, 109syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  ( F `  z
)  e.  RR )
111 ffvelrn 5679 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F : ( 1 ... N ) --> RR 
/\  A  e.  ( 1 ... N ) )  ->  ( F `  A )  e.  RR )
112108, 90, 111syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  ( F `  A
)  e.  RR )
11343adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  B  e.  ( 1 ... N ) )
114 ffvelrn 5679 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F : ( 1 ... N ) --> RR 
/\  B  e.  ( 1 ... N ) )  ->  ( F `  B )  e.  RR )
115108, 113, 114syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  ( F `  B
)  e.  RR )
116 sotr2 4359 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( O  Or  RR  /\  ( ( F `  z )  e.  RR  /\  ( F `  A
)  e.  RR  /\  ( F `  B )  e.  RR ) )  ->  ( ( -.  ( F `  A
) O ( F `
 z )  /\  ( F `  A ) O ( F `  B ) )  -> 
( F `  z
) O ( F `
 B ) ) )
1178, 116mpan 651 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( F `  z
)  e.  RR  /\  ( F `  A )  e.  RR  /\  ( F `  B )  e.  RR )  ->  (
( -.  ( F `
 A ) O ( F `  z
)  /\  ( F `  A ) O ( F `  B ) )  ->  ( F `  z ) O ( F `  B ) ) )
118110, 112, 115, 117syl3anc 1182 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  ( ( -.  ( F `  A ) O ( F `  z )  /\  ( F `  A ) O ( F `  B ) )  -> 
( F `  z
) O ( F `
 B ) ) )
119106, 107, 118mp2and 660 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  ( F `  z
) O ( F `
 B ) )
120119a1d 22 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  ( z  <  w  ->  ( F `  z
) O ( F `
 B ) ) )
121 elsni 3677 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  e.  { B }  ->  w  =  B )
122121fveq2d 5545 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  { B }  ->  ( F `  w
)  =  ( F `
 B ) )
123122breq2d 4051 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  { B }  ->  ( ( F `  z ) O ( F `  w )  <-> 
( F `  z
) O ( F `
 B ) ) )
124123imbi2d 307 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  { B }  ->  ( ( z  < 
w  ->  ( F `  z ) O ( F `  w ) )  <->  ( z  < 
w  ->  ( F `  z ) O ( F `  B ) ) ) )
125120, 124syl5ibrcom 213 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  ( w  e.  { B }  ->  ( z  <  w  ->  ( F `  z ) O ( F `  w ) ) ) )
126125ralrimiv 2638 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  A. w  e.  { B }  ( z  <  w  ->  ( F `  z ) O ( F `  w ) ) )
127 ralunb 3369 . . . . . . . . . . . . . . . . . . 19  |-  ( A. w  e.  ( f  u.  { B } ) ( z  <  w  ->  ( F `  z
) O ( F `
 w ) )  <-> 
( A. w  e.  f  ( z  < 
w  ->  ( F `  z ) O ( F `  w ) )  /\  A. w  e.  { B }  (
z  <  w  ->  ( F `  z ) O ( F `  w ) ) ) )
12884, 126, 127sylanbrc 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  z  e.  f )  ->  A. w  e.  ( f  u.  { B } ) ( z  <  w  ->  ( F `  z ) O ( F `  w ) ) )
129128ralrimiva 2639 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  A. z  e.  f  A. w  e.  (
f  u.  { B } ) ( z  <  w  ->  ( F `  z ) O ( F `  w ) ) )
13062sselda 3193 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  w  e.  ( f  u.  { B } ) )  ->  w  e.  ( 1 ... B
) )
131 elfzle2 10816 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  e.  ( 1 ... B )  ->  w  <_  B )
132131adantl 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  w  e.  ( 1 ... B ) )  ->  w  <_  B
)
133 elfzelz 10814 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( w  e.  ( 1 ... B )  ->  w  e.  ZZ )
134133zred 10133 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  e.  ( 1 ... B )  ->  w  e.  RR )
135134adantl 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  w  e.  ( 1 ... B ) )  ->  w  e.  RR )
13635ad3antrrr 710 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  w  e.  ( 1 ... B ) )  ->  B  e.  RR )
137135, 136lenltd 8981 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  w  e.  ( 1 ... B ) )  ->  ( w  <_  B 
<->  -.  B  <  w
) )
138132, 137mpbid 201 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  w  e.  ( 1 ... B ) )  ->  -.  B  <  w )
139130, 138syldan 456 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  w  e.  ( f  u.  { B } ) )  ->  -.  B  <  w )
140139pm2.21d 98 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( f  C_  (
1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  /\  w  e.  ( f  u.  { B } ) )  ->  ( B  <  w  ->  ( F `  z ) O ( F `  w ) ) )
141140ralrimiva 2639 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  A. w  e.  (
f  u.  { B } ) ( B  <  w  ->  ( F `  z ) O ( F `  w ) ) )
142 elsni 3677 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  { B }  ->  z  =  B )
143142breq1d 4049 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  { B }  ->  ( z  <  w  <->  B  <  w ) )
144143imbi1d 308 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  { B }  ->  ( ( z  < 
w  ->  ( F `  z ) O ( F `  w ) )  <->  ( B  < 
w  ->  ( F `  z ) O ( F `  w ) ) ) )
145144ralbidv 2576 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  { B }  ->  ( A. w  e.  ( f  u.  { B } ) ( z  <  w  ->  ( F `  z ) O ( F `  w ) )  <->  A. w  e.  ( f  u.  { B } ) ( B  <  w  ->  ( F `  z ) O ( F `  w ) ) ) )
146141, 145syl5ibrcom 213 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( z  e.  { B }  ->  A. w  e.  ( f  u.  { B } ) ( z  <  w  ->  ( F `  z ) O ( F `  w ) ) ) )
147146ralrimiv 2638 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  A. z  e.  { B } A. w  e.  ( f  u.  { B } ) ( z  <  w  ->  ( F `  z ) O ( F `  w ) ) )
148 ralunb 3369 . . . . . . . . . . . . . . . . 17  |-  ( A. z  e.  ( f  u.  { B } ) A. w  e.  ( f  u.  { B } ) ( z  <  w  ->  ( F `  z ) O ( F `  w ) )  <->  ( A. z  e.  f  A. w  e.  ( f  u.  { B } ) ( z  <  w  ->  ( F `  z
) O ( F `
 w ) )  /\  A. z  e. 
{ B } A. w  e.  ( f  u.  { B } ) ( z  <  w  ->  ( F `  z
) O ( F `
 w ) ) ) )
149129, 147, 148sylanbrc 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  A. z  e.  (
f  u.  { B } ) A. w  e.  ( f  u.  { B } ) ( z  <  w  ->  ( F `  z ) O ( F `  w ) ) )
15043snssd 3776 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  { B }  C_  (
1 ... N ) )
15171, 150unssd 3364 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( f  u.  { B } )  C_  (
1 ... N ) )
152 soisores 5840 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  <  Or  (
1 ... N )  /\  O  Or  RR )  /\  ( F : ( 1 ... N ) --> RR  /\  ( f  u.  { B }
)  C_  ( 1 ... N ) ) )  ->  ( ( F  |`  ( f  u. 
{ B } ) )  Isom  <  ,  O  ( ( f  u. 
{ B } ) ,  ( F "
( f  u.  { B } ) ) )  <->  A. z  e.  (
f  u.  { B } ) A. w  e.  ( f  u.  { B } ) ( z  <  w  ->  ( F `  z ) O ( F `  w ) ) ) )
15379, 8, 152mpanl12 663 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( 1 ... N ) --> RR 
/\  ( f  u. 
{ B } ) 
C_  ( 1 ... N ) )  -> 
( ( F  |`  ( f  u.  { B } ) )  Isom  <  ,  O  ( (
f  u.  { B } ) ,  ( F " ( f  u.  { B }
) ) )  <->  A. z  e.  ( f  u.  { B } ) A. w  e.  ( f  u.  { B } ) ( z  <  w  ->  ( F `  z ) O ( F `  w ) ) ) )
15466, 151, 153syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( ( F  |`  ( f  u.  { B } ) )  Isom  <  ,  O  ( (
f  u.  { B } ) ,  ( F " ( f  u.  { B }
) ) )  <->  A. z  e.  ( f  u.  { B } ) A. w  e.  ( f  u.  { B } ) ( z  <  w  ->  ( F `  z ) O ( F `  w ) ) ) )
155149, 154mpbird 223 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( F  |`  (
f  u.  { B } ) )  Isom  <  ,  O  ( (
f  u.  { B } ) ,  ( F " ( f  u.  { B }
) ) ) )
156 ssun2 3352 . . . . . . . . . . . . . . . 16  |-  { B }  C_  ( f  u. 
{ B } )
157 snssg 3767 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  ( 1 ... B )  ->  ( B  e.  ( f  u.  { B } )  <->  { B }  C_  (
f  u.  { B } ) ) )
15860, 157syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( B  e.  ( f  u.  { B } )  <->  { B }  C_  ( f  u. 
{ B } ) ) )
159156, 158mpbiri 224 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  B  e.  ( f  u.  { B } ) )
16022erdszelem1 23737 . . . . . . . . . . . . . . 15  |-  ( ( f  u.  { B } )  e.  {
y  e.  ~P (
1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) }  <->  ( (
f  u.  { B } )  C_  (
1 ... B )  /\  ( F  |`  ( f  u.  { B }
) )  Isom  <  ,  O  ( ( f  u.  { B }
) ,  ( F
" ( f  u. 
{ B } ) ) )  /\  B  e.  ( f  u.  { B } ) ) )
16162, 155, 159, 160syl3anbrc 1136 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( f  u.  { B } )  e.  {
y  e.  ~P (
1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } )
162 vex 2804 . . . . . . . . . . . . . . . . 17  |-  f  e. 
_V
163 snex 4232 . . . . . . . . . . . . . . . . 17  |-  { B }  e.  _V
164162, 163unex 4534 . . . . . . . . . . . . . . . 16  |-  ( f  u.  { B }
)  e.  _V
1651fdmi 5410 . . . . . . . . . . . . . . . 16  |-  dom  #  =  _V
166164, 165eleqtrri 2369 . . . . . . . . . . . . . . 15  |-  ( f  u.  { B }
)  e.  dom  #
167 funfvima 5769 . . . . . . . . . . . . . . 15  |-  ( ( Fun  #  /\  (
f  u.  { B } )  e.  dom  # )  ->  ( (
f  u.  { B } )  e.  {
y  e.  ~P (
1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) }  ->  (
# `  ( f  u.  { B } ) )  e.  ( # " { y  e.  ~P ( 1 ... B
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  B  e.  y ) } ) ) )
1683, 166, 167mp2an 653 . . . . . . . . . . . . . 14  |-  ( ( f  u.  { B } )  e.  {
y  e.  ~P (
1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) }  ->  (
# `  ( f  u.  { B } ) )  e.  ( # " { y  e.  ~P ( 1 ... B
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  B  e.  y ) } ) )
169161, 168syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( # `  ( f  u.  { B }
) )  e.  (
# " { y  e.  ~P ( 1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } ) )
17046, 169eqeltrrd 2371 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( ( # `  f
)  +  1 )  e.  ( # " {
y  e.  ~P (
1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } ) )
171 ne0i 3474 . . . . . . . . . . . 12  |-  ( ( ( # `  f
)  +  1 )  e.  ( # " {
y  e.  ~P (
1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } )  ->  ( # " {
y  e.  ~P (
1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } )  =/=  (/) )
172170, 171syl 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( # " { y  e.  ~P ( 1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } )  =/=  (/) )
17323simpli 444 . . . . . . . . . . . 12  |-  ( # " { y  e.  ~P ( 1 ... B
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  B  e.  y ) } )  e. 
Fin
174 fimaxre2 9718 . . . . . . . . . . . 12  |-  ( ( ( # " {
y  e.  ~P (
1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } ) 
C_  RR  /\  ( #
" { y  e. 
~P ( 1 ... B )  |  ( ( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  /\  B  e.  y ) } )  e.  Fin )  ->  E. z  e.  RR  A. w  e.  ( # " { y  e.  ~P ( 1 ... B
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  B  e.  y ) } ) w  <_  z )
17527, 173, 174sylancl 643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  ->  E. z  e.  RR  A. w  e.  ( # " { y  e.  ~P ( 1 ... B
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  B  e.  y ) } ) w  <_  z )
176 suprub 9731 . . . . . . . . . . 11  |-  ( ( ( ( # " {
y  e.  ~P (
1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } ) 
C_  RR  /\  ( #
" { y  e. 
~P ( 1 ... B )  |  ( ( F  |`  y
)  Isom  <  ,  O  ( y ,  ( F " y ) )  /\  B  e.  y ) } )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ( # " {
y  e.  ~P (
1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } ) w  <_  z )  /\  ( ( # `  f
)  +  1 )  e.  ( # " {
y  e.  ~P (
1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } ) )  ->  ( ( # `
 f )  +  1 )  <_  sup ( ( # " {
y  e.  ~P (
1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } ) ,  RR ,  <  ) )
17727, 172, 175, 170, 176syl31anc 1185 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( ( # `  f
)  +  1 )  <_  sup ( ( # " { y  e.  ~P ( 1 ... B
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  B  e.  y ) } ) ,  RR ,  <  )
)
1785, 6, 7erdszelem3 23739 . . . . . . . . . . . 12  |-  ( B  e.  ( 1 ... N )  ->  ( K `  B )  =  sup ( ( # " { y  e.  ~P ( 1 ... B
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  B  e.  y ) } ) ,  RR ,  <  )
)
17932, 178syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( K `  B
)  =  sup (
( # " { y  e.  ~P ( 1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } ) ,  RR ,  <  ) )
180179ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( K `  B
)  =  sup (
( # " { y  e.  ~P ( 1 ... B )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  B  e.  y ) } ) ,  RR ,  <  ) )
181177, 180breqtrrd 4065 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( ( # `  f
)  +  1 )  <_  ( K `  B ) )
1825, 6, 7, 8erdszelem6 23742 . . . . . . . . . . . . 13  |-  ( ph  ->  K : ( 1 ... N ) --> NN )
183 ffvelrn 5679 . . . . . . . . . . . . 13  |-  ( ( K : ( 1 ... N ) --> NN 
/\  B  e.  ( 1 ... N ) )  ->  ( K `  B )  e.  NN )
184182, 32, 183syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( K `  B
)  e.  NN )
185184ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( K `  B
)  e.  NN )
186185nnnn0d 10034 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( K `  B
)  e.  NN0 )
187 nn0ltp1le 10090 . . . . . . . . . 10  |-  ( ( ( # `  f
)  e.  NN0  /\  ( K `  B )  e.  NN0 )  -> 
( ( # `  f
)  <  ( K `  B )  <->  ( ( # `
 f )  +  1 )  <_  ( K `  B )
) )
18820, 186, 187syl2anc 642 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( ( # `  f
)  <  ( K `  B )  <->  ( ( # `
 f )  +  1 )  <_  ( K `  B )
) )
189181, 188mpbird 223 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( # `  f )  <  ( K `  B ) )
19021, 189ltned 8971 . . . . . . 7  |-  ( ( ( ph  /\  (
f  C_  ( 1 ... A )  /\  ( F  |`  f ) 
Isom  <  ,  O  ( f ,  ( F
" f ) )  /\  A  e.  f ) )  /\  ( F `  A ) O ( F `  B ) )  -> 
( # `  f )  =/=  ( K `  B ) )
191190ex 423 . . . . . 6  |-  ( (
ph  /\  ( f  C_  ( 1 ... A
)  /\  ( F  |`  f )  Isom  <  ,  O  ( f ,  ( F " f
) )  /\  A  e.  f ) )  -> 
( ( F `  A ) O ( F `  B )  ->  ( # `  f
)  =/=  ( K `
 B ) ) )
192 neeq1 2467 . . . . . . 7  |-  ( (
# `  f )  =  ( K `  A )  ->  (
( # `  f )  =/=  ( K `  B )  <->  ( K `  A )  =/=  ( K `  B )
) )
193192imbi2d 307 . . . . . 6  |-  ( (
# `  f )  =  ( K `  A )  ->  (
( ( F `  A ) O ( F `  B )  ->  ( # `  f
)  =/=  ( K `
 B ) )  <-> 
( ( F `  A ) O ( F `  B )  ->  ( K `  A )  =/=  ( K `  B )
) ) )
194191, 193syl5ibcom 211 . . . . 5  |-  ( (
ph  /\  ( f  C_  ( 1 ... A
)  /\  ( F  |`  f )  Isom  <  ,  O  ( f ,  ( F " f
) )  /\  A  e.  f ) )  -> 
( ( # `  f
)  =  ( K `
 A )  -> 
( ( F `  A ) O ( F `  B )  ->  ( K `  A )  =/=  ( K `  B )
) ) )
19514, 194sylan2b 461 . . . 4  |-  ( (
ph  /\  f  e.  { y  e.  ~P (
1 ... A )  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F " y
) )  /\  A  e.  y ) } )  ->  ( ( # `  f )  =  ( K `  A )  ->  ( ( F `
 A ) O ( F `  B
)  ->  ( K `  A )  =/=  ( K `  B )
) ) )
196195rexlimdva 2680 . . 3  |-  ( ph  ->  ( E. f  e. 
{ y  e.  ~P ( 1 ... A
)  |  ( ( F  |`  y )  Isom  <  ,  O  ( y ,  ( F
" y ) )  /\  A  e.  y ) }  ( # `  f )  =  ( K `  A )  ->  ( ( F `
 A ) O ( F `  B
)  ->  ( K `  A )  =/=  ( K `  B )
) ) )
19712, 196mpd 14 . 2  |-  ( ph  ->  ( ( F `  A ) O ( F `  B )  ->  ( K `  A )  =/=  ( K `  B )
) )
198197necon2bd 2508 1  |-  ( ph  ->  ( ( K `  A )  =  ( K `  B )  ->  -.  ( F `  A ) O ( F `  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560   _Vcvv 2801    u. cun 3163    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   class class class wbr 4039    e. cmpt 4093    Or wor 4329   dom cdm 4705    |` cres 4707   "cima 4708   Fun wfun 5265   -->wf 5267   -1-1->wf1 5268   ` cfv 5271    Isom wiso 5272  (class class class)co 5874   Fincfn 6879   supcsup 7209   RRcr 8752   1c1 8754    + caddc 8756    +oocpnf 8880    < clt 8883    <_ cle 8884   NNcn 9762   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798   #chash 11353
This theorem is referenced by:  erdszelem9  23745
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-hash 11354
  Copyright terms: Public domain W3C validator