MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ereq1 Structured version   Unicode version

Theorem ereq1 6914
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq1  |-  ( R  =  S  ->  ( R  Er  A  <->  S  Er  A ) )

Proof of Theorem ereq1
StepHypRef Expression
1 releq 4961 . . 3  |-  ( R  =  S  ->  ( Rel  R  <->  Rel  S ) )
2 dmeq 5072 . . . 4  |-  ( R  =  S  ->  dom  R  =  dom  S )
32eqeq1d 2446 . . 3  |-  ( R  =  S  ->  ( dom  R  =  A  <->  dom  S  =  A ) )
4 cnveq 5048 . . . . . 6  |-  ( R  =  S  ->  `' R  =  `' S
)
5 coeq1 5032 . . . . . . 7  |-  ( R  =  S  ->  ( R  o.  R )  =  ( S  o.  R ) )
6 coeq2 5033 . . . . . . 7  |-  ( R  =  S  ->  ( S  o.  R )  =  ( S  o.  S ) )
75, 6eqtrd 2470 . . . . . 6  |-  ( R  =  S  ->  ( R  o.  R )  =  ( S  o.  S ) )
84, 7uneq12d 3504 . . . . 5  |-  ( R  =  S  ->  ( `' R  u.  ( R  o.  R )
)  =  ( `' S  u.  ( S  o.  S ) ) )
98sseq1d 3377 . . . 4  |-  ( R  =  S  ->  (
( `' R  u.  ( R  o.  R
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  R )
)
10 sseq2 3372 . . . 4  |-  ( R  =  S  ->  (
( `' S  u.  ( S  o.  S
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  S )
)
119, 10bitrd 246 . . 3  |-  ( R  =  S  ->  (
( `' R  u.  ( R  o.  R
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  S )
)
121, 3, 113anbi123d 1255 . 2  |-  ( R  =  S  ->  (
( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )  <->  ( Rel  S  /\  dom  S  =  A  /\  ( `' S  u.  ( S  o.  S )
)  C_  S )
) )
13 df-er 6907 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
14 df-er 6907 . 2  |-  ( S  Er  A  <->  ( Rel  S  /\  dom  S  =  A  /\  ( `' S  u.  ( S  o.  S ) ) 
C_  S ) )
1512, 13, 143bitr4g 281 1  |-  ( R  =  S  ->  ( R  Er  A  <->  S  Er  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ w3a 937    = wceq 1653    u. cun 3320    C_ wss 3322   `'ccnv 4879   dom cdm 4880    o. ccom 4884   Rel wrel 4885    Er wer 6904
This theorem is referenced by:  riiner  6979  efglem  15350  efger  15352  efgrelexlemb  15384  efgcpbllemb  15389  frgpuplem  15406  pstmxmet  24294
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4215  df-opab 4269  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-er 6907
  Copyright terms: Public domain W3C validator