MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erexb Unicode version

Theorem erexb 6868
Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erexb  |-  ( R  Er  A  ->  ( R  e.  _V  <->  A  e.  _V ) )

Proof of Theorem erexb
StepHypRef Expression
1 dmexg 5072 . . 3  |-  ( R  e.  _V  ->  dom  R  e.  _V )
2 erdm 6853 . . . 4  |-  ( R  Er  A  ->  dom  R  =  A )
32eleq1d 2455 . . 3  |-  ( R  Er  A  ->  ( dom  R  e.  _V  <->  A  e.  _V ) )
41, 3syl5ib 211 . 2  |-  ( R  Er  A  ->  ( R  e.  _V  ->  A  e.  _V ) )
5 erex 6867 . 2  |-  ( R  Er  A  ->  ( A  e.  _V  ->  R  e.  _V ) )
64, 5impbid 184 1  |-  ( R  Er  A  ->  ( R  e.  _V  <->  A  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    e. wcel 1717   _Vcvv 2901   dom cdm 4820    Er wer 6840
This theorem is referenced by:  prtex  26422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-xp 4826  df-rel 4827  df-cnv 4828  df-dm 4830  df-rn 4831  df-er 6843
  Copyright terms: Public domain W3C validator