MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erinxp Unicode version

Theorem erinxp 6775
Description: A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
erinxp.r  |-  ( ph  ->  R  Er  A )
erinxp.a  |-  ( ph  ->  B  C_  A )
Assertion
Ref Expression
erinxp  |-  ( ph  ->  ( R  i^i  ( B  X.  B ) )  Er  B )

Proof of Theorem erinxp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3424 . . . 4  |-  ( R  i^i  ( B  X.  B ) )  C_  ( B  X.  B
)
2 relxp 4831 . . . 4  |-  Rel  ( B  X.  B )
3 relss 4812 . . . 4  |-  ( ( R  i^i  ( B  X.  B ) ) 
C_  ( B  X.  B )  ->  ( Rel  ( B  X.  B
)  ->  Rel  ( R  i^i  ( B  X.  B ) ) ) )
41, 2, 3mp2 17 . . 3  |-  Rel  ( R  i^i  ( B  X.  B ) )
54a1i 10 . 2  |-  ( ph  ->  Rel  ( R  i^i  ( B  X.  B
) ) )
6 simpr 447 . . . . 5  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  x ( R  i^i  ( B  X.  B ) ) y )
7 brinxp2 4788 . . . . 5  |-  ( x ( R  i^i  ( B  X.  B ) ) y  <->  ( x  e.  B  /\  y  e.  B  /\  x R y ) )
86, 7sylib 188 . . . 4  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  ( x  e.  B  /\  y  e.  B  /\  x R y ) )
98simp2d 968 . . 3  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  y  e.  B )
108simp1d 967 . . 3  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  x  e.  B )
11 erinxp.r . . . . 5  |-  ( ph  ->  R  Er  A )
1211adantr 451 . . . 4  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  R  Er  A )
138simp3d 969 . . . 4  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  x R
y )
1412, 13ersym 6714 . . 3  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  y R x )
15 brinxp2 4788 . . 3  |-  ( y ( R  i^i  ( B  X.  B ) ) x  <->  ( y  e.  B  /\  x  e.  B  /\  y R x ) )
169, 10, 14, 15syl3anbrc 1136 . 2  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  y ( R  i^i  ( B  X.  B ) ) x )
1710adantrr 697 . . 3  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  x  e.  B )
18 simprr 733 . . . . 5  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  -> 
y ( R  i^i  ( B  X.  B
) ) z )
19 brinxp2 4788 . . . . 5  |-  ( y ( R  i^i  ( B  X.  B ) ) z  <->  ( y  e.  B  /\  z  e.  B  /\  y R z ) )
2018, 19sylib 188 . . . 4  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  -> 
( y  e.  B  /\  z  e.  B  /\  y R z ) )
2120simp2d 968 . . 3  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  -> 
z  e.  B )
2211adantr 451 . . . 4  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  R  Er  A )
2313adantrr 697 . . . 4  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  x R y )
2420simp3d 969 . . . 4  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  -> 
y R z )
2522, 23, 24ertrd 6718 . . 3  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  x R z )
26 brinxp2 4788 . . 3  |-  ( x ( R  i^i  ( B  X.  B ) ) z  <->  ( x  e.  B  /\  z  e.  B  /\  x R z ) )
2717, 21, 25, 26syl3anbrc 1136 . 2  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  x ( R  i^i  ( B  X.  B
) ) z )
2811adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  R  Er  A )
29 erinxp.a . . . . . . 7  |-  ( ph  ->  B  C_  A )
3029sselda 3214 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
3128, 30erref 6722 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  x R x )
3231ex 423 . . . 4  |-  ( ph  ->  ( x  e.  B  ->  x R x ) )
3332pm4.71rd 616 . . 3  |-  ( ph  ->  ( x  e.  B  <->  ( x R x  /\  x  e.  B )
) )
34 brin 4107 . . . 4  |-  ( x ( R  i^i  ( B  X.  B ) ) x  <->  ( x R x  /\  x ( B  X.  B ) x ) )
35 brxp 4757 . . . . . 6  |-  ( x ( B  X.  B
) x  <->  ( x  e.  B  /\  x  e.  B ) )
36 anidm 625 . . . . . 6  |-  ( ( x  e.  B  /\  x  e.  B )  <->  x  e.  B )
3735, 36bitri 240 . . . . 5  |-  ( x ( B  X.  B
) x  <->  x  e.  B )
3837anbi2i 675 . . . 4  |-  ( ( x R x  /\  x ( B  X.  B ) x )  <-> 
( x R x  /\  x  e.  B
) )
3934, 38bitri 240 . . 3  |-  ( x ( R  i^i  ( B  X.  B ) ) x  <->  ( x R x  /\  x  e.  B ) )
4033, 39syl6bbr 254 . 2  |-  ( ph  ->  ( x  e.  B  <->  x ( R  i^i  ( B  X.  B ) ) x ) )
415, 16, 27, 40iserd 6728 1  |-  ( ph  ->  ( R  i^i  ( B  X.  B ) )  Er  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    e. wcel 1701    i^i cin 3185    C_ wss 3186   class class class wbr 4060    X. cxp 4724   Rel wrel 4731    Er wer 6699
This theorem is referenced by:  frgpuplem  15130  pi1buni  18591  pi1addf  18598  pi1addval  18599  pi1grplem  18600
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pr 4251
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-br 4061  df-opab 4115  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-er 6702
  Copyright terms: Public domain W3C validator