Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erng1lem Unicode version

Theorem erng1lem 31235
Description: Value of the endomorphism division ring unit. (Contributed by NM, 12-Oct-2013.)
Hypotheses
Ref Expression
erng1.h  |-  H  =  ( LHyp `  K
)
erng1.t  |-  T  =  ( ( LTrn `  K
) `  W )
erng1.e  |-  E  =  ( ( TEndo `  K
) `  W )
erng1.d  |-  D  =  ( ( EDRing `  K
) `  W )
erng1.r  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
Assertion
Ref Expression
erng1lem  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 1r `  D
)  =  (  _I  |`  T ) )

Proof of Theorem erng1lem
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 erng1.h . . . 4  |-  H  =  ( LHyp `  K
)
2 erng1.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 erng1.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
41, 2, 3tendoidcl 31017 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
5 erng1.d . . . 4  |-  D  =  ( ( EDRing `  K
) `  W )
6 eqid 2366 . . . 4  |-  ( Base `  D )  =  (
Base `  D )
71, 2, 3, 5, 6erngbase 31049 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
84, 7eleqtrrd 2443 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  ( Base `  D
) )
97eleq2d 2433 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( u  e.  (
Base `  D )  <->  u  e.  E ) )
10 simpl 443 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  u  e.  E
)  ->  ( K  e.  HL  /\  W  e.  H ) )
114adantr 451 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  u  e.  E
)  ->  (  _I  |`  T )  e.  E
)
12 simpr 447 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  u  e.  E
)  ->  u  e.  E )
13 eqid 2366 . . . . . . . . 9  |-  ( .r
`  D )  =  ( .r `  D
)
141, 2, 3, 5, 13erngmul 31054 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  T )  e.  E  /\  u  e.  E
) )  ->  (
(  _I  |`  T ) ( .r `  D
) u )  =  ( (  _I  |`  T )  o.  u ) )
1510, 11, 12, 14syl12anc 1181 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  u  e.  E
)  ->  ( (  _I  |`  T ) ( .r `  D ) u )  =  ( (  _I  |`  T )  o.  u ) )
161, 2, 3tendo1mul 31018 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  u  e.  E
)  ->  ( (  _I  |`  T )  o.  u )  =  u )
1715, 16eqtrd 2398 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  u  e.  E
)  ->  ( (  _I  |`  T ) ( .r `  D ) u )  =  u )
181, 2, 3, 5, 13erngmul 31054 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( u  e.  E  /\  (  _I  |`  T )  e.  E
) )  ->  (
u ( .r `  D ) (  _I  |`  T ) )  =  ( u  o.  (  _I  |`  T ) ) )
1910, 12, 11, 18syl12anc 1181 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  u  e.  E
)  ->  ( u
( .r `  D
) (  _I  |`  T ) )  =  ( u  o.  (  _I  |`  T ) ) )
201, 2, 3tendo1mulr 31019 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  u  e.  E
)  ->  ( u  o.  (  _I  |`  T ) )  =  u )
2119, 20eqtrd 2398 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  u  e.  E
)  ->  ( u
( .r `  D
) (  _I  |`  T ) )  =  u )
2217, 21jca 518 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  u  e.  E
)  ->  ( (
(  _I  |`  T ) ( .r `  D
) u )  =  u  /\  ( u ( .r `  D
) (  _I  |`  T ) )  =  u ) )
2322ex 423 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( u  e.  E  ->  ( ( (  _I  |`  T ) ( .r
`  D ) u )  =  u  /\  ( u ( .r
`  D ) (  _I  |`  T )
)  =  u ) ) )
249, 23sylbid 206 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( u  e.  (
Base `  D )  ->  ( ( (  _I  |`  T ) ( .r
`  D ) u )  =  u  /\  ( u ( .r
`  D ) (  _I  |`  T )
)  =  u ) ) )
2524ralrimiv 2710 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  A. u  e.  (
Base `  D )
( ( (  _I  |`  T ) ( .r
`  D ) u )  =  u  /\  ( u ( .r
`  D ) (  _I  |`  T )
)  =  u ) )
26 erng1.r . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
27 eqid 2366 . . . 4  |-  ( 1r
`  D )  =  ( 1r `  D
)
286, 13, 27isrngid 15576 . . 3  |-  ( D  e.  Ring  ->  ( ( (  _I  |`  T )  e.  ( Base `  D
)  /\  A. u  e.  ( Base `  D
) ( ( (  _I  |`  T )
( .r `  D
) u )  =  u  /\  ( u ( .r `  D
) (  _I  |`  T ) )  =  u ) )  <->  ( 1r `  D )  =  (  _I  |`  T )
) )
2926, 28syl 15 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( (  _I  |`  T )  e.  (
Base `  D )  /\  A. u  e.  (
Base `  D )
( ( (  _I  |`  T ) ( .r
`  D ) u )  =  u  /\  ( u ( .r
`  D ) (  _I  |`  T )
)  =  u ) )  <->  ( 1r `  D )  =  (  _I  |`  T )
) )
308, 25, 29mpbi2and 887 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 1r `  D
)  =  (  _I  |`  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1647    e. wcel 1715   A.wral 2628    _I cid 4407    |` cres 4794    o. ccom 4796   ` cfv 5358  (class class class)co 5981   Basecbs 13356   .rcmulr 13417   Ringcrg 15547   1rcur 15549   HLchlt 29599   LHypclh 30232   LTrncltrn 30349   TEndoctendo 31000   EDRingcedring 31001
This theorem is referenced by:  erngdvlem4  31239
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-undef 6440  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-map 6917  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-2 9951  df-3 9952  df-n0 10115  df-z 10176  df-uz 10382  df-fz 10936  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-sets 13362  df-plusg 13429  df-mulr 13430  df-0g 13614  df-poset 14290  df-plt 14302  df-lub 14318  df-glb 14319  df-join 14320  df-meet 14321  df-p0 14355  df-p1 14356  df-lat 14362  df-clat 14424  df-mnd 14577  df-mgp 15536  df-rng 15550  df-ur 15552  df-oposet 29425  df-ol 29427  df-oml 29428  df-covers 29515  df-ats 29516  df-atl 29547  df-cvlat 29571  df-hlat 29600  df-llines 29746  df-lplanes 29747  df-lvols 29748  df-lines 29749  df-psubsp 29751  df-pmap 29752  df-padd 30044  df-lhyp 30236  df-laut 30237  df-ldil 30352  df-ltrn 30353  df-trl 30407  df-tendo 31003  df-edring 31005
  Copyright terms: Public domain W3C validator