Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngbase-rN Unicode version

Theorem erngbase-rN 31303
Description: The base set of the division ring on trace-preserving endomorphisms is the set of all trace-preserving endomorphisms (for a fiducial co-atom  W). (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
erngset.h-r  |-  H  =  ( LHyp `  K
)
erngset.t-r  |-  T  =  ( ( LTrn `  K
) `  W )
erngset.e-r  |-  E  =  ( ( TEndo `  K
) `  W )
erngset.d-r  |-  D  =  ( ( EDRing R `  K ) `  W
)
erng.c-r  |-  C  =  ( Base `  D
)
Assertion
Ref Expression
erngbase-rN  |-  ( ( K  e.  V  /\  W  e.  H )  ->  C  =  E )

Proof of Theorem erngbase-rN
Dummy variables  f 
s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erngset.h-r . . . 4  |-  H  =  ( LHyp `  K
)
2 erngset.t-r . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 erngset.e-r . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
4 erngset.d-r . . . 4  |-  D  =  ( ( EDRing R `  K ) `  W
)
51, 2, 3, 4erngset-rN 31302 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  D  =  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( t  o.  s ) )
>. } )
65fveq2d 5699 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( Base `  D
)  =  ( Base `  { <. ( Base `  ndx ) ,  E >. , 
<. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  E , 
t  e.  E  |->  ( t  o.  s ) ) >. } ) )
7 erng.c-r . 2  |-  C  =  ( Base `  D
)
8 fvex 5709 . . . 4  |-  ( (
TEndo `  K ) `  W )  e.  _V
93, 8eqeltri 2482 . . 3  |-  E  e. 
_V
10 eqid 2412 . . . 4  |-  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( t  o.  s ) )
>. }  =  { <. (
Base `  ndx ) ,  E >. ,  <. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) >. ,  <. ( .r `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( t  o.  s ) )
>. }
1110rngbase 13540 . . 3  |-  ( E  e.  _V  ->  E  =  ( Base `  { <. ( Base `  ndx ) ,  E >. , 
<. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  E , 
t  e.  E  |->  ( t  o.  s ) ) >. } ) )
129, 11ax-mp 8 . 2  |-  E  =  ( Base `  { <. ( Base `  ndx ) ,  E >. , 
<. ( +g  `  ndx ) ,  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  E , 
t  e.  E  |->  ( t  o.  s ) ) >. } )
136, 7, 123eqtr4g 2469 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  C  =  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2924   {ctp 3784   <.cop 3785    e. cmpt 4234    o. ccom 4849   ` cfv 5421    e. cmpt2 6050   ndxcnx 13429   Basecbs 13432   +g cplusg 13492   .rcmulr 13493   LHypclh 30478   LTrncltrn 30595   TEndoctendo 31246   EDRing Rcedring-rN 31248
This theorem is referenced by:  erngdvlem1-rN  31490  erngdvlem2-rN  31491  erngdvlem3-rN  31492  erngdvlem4-rN  31493
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-nn 9965  df-2 10022  df-3 10023  df-n0 10186  df-z 10247  df-uz 10453  df-fz 11008  df-struct 13434  df-ndx 13435  df-slot 13436  df-base 13437  df-plusg 13505  df-mulr 13506  df-edring-rN 31250
  Copyright terms: Public domain W3C validator