Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngplus2 Unicode version

Theorem erngplus2 31286
Description: Ring addition operation. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
erngset.h  |-  H  =  ( LHyp `  K
)
erngset.t  |-  T  =  ( ( LTrn `  K
) `  W )
erngset.e  |-  E  =  ( ( TEndo `  K
) `  W )
erngset.d  |-  D  =  ( ( EDRing `  K
) `  W )
erng.p  |-  .+  =  ( +g  `  D )
Assertion
Ref Expression
erngplus2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  F  e.  T ) )  -> 
( ( U  .+  V ) `  F
)  =  ( ( U `  F )  o.  ( V `  F ) ) )

Proof of Theorem erngplus2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 erngset.h . . . 4  |-  H  =  ( LHyp `  K
)
2 erngset.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 erngset.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
4 erngset.d . . . 4  |-  D  =  ( ( EDRing `  K
) `  W )
5 erng.p . . . 4  |-  .+  =  ( +g  `  D )
61, 2, 3, 4, 5erngplus 31285 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E ) )  -> 
( U  .+  V
)  =  ( f  e.  T  |->  ( ( U `  f )  o.  ( V `  f ) ) ) )
763adantr3 1118 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  F  e.  T ) )  -> 
( U  .+  V
)  =  ( f  e.  T  |->  ( ( U `  f )  o.  ( V `  f ) ) ) )
8 fveq2 5687 . . . 4  |-  ( f  =  F  ->  ( U `  f )  =  ( U `  F ) )
9 fveq2 5687 . . . 4  |-  ( f  =  F  ->  ( V `  f )  =  ( V `  F ) )
108, 9coeq12d 4996 . . 3  |-  ( f  =  F  ->  (
( U `  f
)  o.  ( V `
 f ) )  =  ( ( U `
 F )  o.  ( V `  F
) ) )
1110adantl 453 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  F  e.  T )
)  /\  f  =  F )  ->  (
( U `  f
)  o.  ( V `
 f ) )  =  ( ( U `
 F )  o.  ( V `  F
) ) )
12 simpr3 965 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  F  e.  T ) )  ->  F  e.  T )
13 fvex 5701 . . . 4  |-  ( U `
 F )  e. 
_V
14 fvex 5701 . . . 4  |-  ( V `
 F )  e. 
_V
1513, 14coex 5372 . . 3  |-  ( ( U `  F )  o.  ( V `  F ) )  e. 
_V
1615a1i 11 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  F  e.  T ) )  -> 
( ( U `  F )  o.  ( V `  F )
)  e.  _V )
177, 11, 12, 16fvmptd 5769 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  F  e.  T ) )  -> 
( ( U  .+  V ) `  F
)  =  ( ( U `  F )  o.  ( V `  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   _Vcvv 2916    e. cmpt 4226    o. ccom 4841   ` cfv 5413  (class class class)co 6040   +g cplusg 13484   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   TEndoctendo 31234   EDRingcedring 31235
This theorem is referenced by:  dvhlveclem  31591
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-plusg 13497  df-mulr 13498  df-edring 31239
  Copyright terms: Public domain W3C validator