MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eroprf Unicode version

Theorem eroprf 6899
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
eropr.1  |-  J  =  ( A /. R
)
eropr.2  |-  K  =  ( B /. S
)
eropr.3  |-  ( ph  ->  T  e.  Z )
eropr.4  |-  ( ph  ->  R  Er  U )
eropr.5  |-  ( ph  ->  S  Er  V )
eropr.6  |-  ( ph  ->  T  Er  W )
eropr.7  |-  ( ph  ->  A  C_  U )
eropr.8  |-  ( ph  ->  B  C_  V )
eropr.9  |-  ( ph  ->  C  C_  W )
eropr.10  |-  ( ph  ->  .+  : ( A  X.  B ) --> C )
eropr.11  |-  ( (
ph  /\  ( (
r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B
) ) )  -> 
( ( r R s  /\  t S u )  ->  (
r  .+  t ) T ( s  .+  u ) ) )
eropr.12  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) }
eropr.13  |-  ( ph  ->  R  e.  X )
eropr.14  |-  ( ph  ->  S  e.  Y )
eropr.15  |-  L  =  ( C /. T
)
Assertion
Ref Expression
eroprf  |-  ( ph  -> 
.+^  : ( J  X.  K ) --> L )
Distinct variable groups:    q, p, r, s, t, u, x, y, z, A    B, p, q, r, s, t, u, x, y, z    L, p, q, x, y, z    J, p, q, x, y, z    R, p, q, r, s, t, u, x, y, z    K, p, q, x, y, z    S, p, q, r, s, t, u, x, y, z    .+ , p, q, r, s, t, u, x, y, z    ph, p, q, r, s, t, u, x, y, z    T, p, q, r, s, t, u, x, y, z    X, p, q, r, s, t, u, z    Y, p, q, r, s, t, u, z
Allowed substitution hints:    C( x, y, z, u, t, s, r, q, p)    .+^ ( x, y, z, u, t, s, r, q, p)    U( x, y, z, u, t, s, r, q, p)    J( u, t, s, r)    K( u, t, s, r)    L( u, t, s, r)    V( x, y, z, u, t, s, r, q, p)    W( x, y, z, u, t, s, r, q, p)    X( x, y)    Y( x, y)    Z( x, y, z, u, t, s, r, q, p)

Proof of Theorem eroprf
StepHypRef Expression
1 eropr.3 . . . . . . . . . . . 12  |-  ( ph  ->  T  e.  Z )
21ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  ( p  e.  A  /\  q  e.  B ) )  ->  T  e.  Z )
3 eropr.10 . . . . . . . . . . . . 13  |-  ( ph  ->  .+  : ( A  X.  B ) --> C )
43adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  .+  : ( A  X.  B ) --> C )
5 fovrn 6116 . . . . . . . . . . . . 13  |-  ( ( 
.+  : ( A  X.  B ) --> C  /\  p  e.  A  /\  q  e.  B
)  ->  ( p  .+  q )  e.  C
)
653expb 1153 . . . . . . . . . . . 12  |-  ( ( 
.+  : ( A  X.  B ) --> C  /\  ( p  e.  A  /\  q  e.  B ) )  -> 
( p  .+  q
)  e.  C )
74, 6sylan 457 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  ( p  e.  A  /\  q  e.  B ) )  -> 
( p  .+  q
)  e.  C )
8 ecelqsg 6856 . . . . . . . . . . 11  |-  ( ( T  e.  Z  /\  ( p  .+  q )  e.  C )  ->  [ ( p  .+  q ) ] T  e.  ( C /. T
) )
92, 7, 8syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  ( p  e.  A  /\  q  e.  B ) )  ->  [ ( p  .+  q ) ] T  e.  ( C /. T
) )
10 eropr.15 . . . . . . . . . 10  |-  L  =  ( C /. T
)
119, 10syl6eleqr 2457 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  ( p  e.  A  /\  q  e.  B ) )  ->  [ ( p  .+  q ) ] T  e.  L )
12 eleq1a 2435 . . . . . . . . 9  |-  ( [ ( p  .+  q
) ] T  e.  L  ->  ( z  =  [ ( p  .+  q ) ] T  ->  z  e.  L ) )
1311, 12syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  ( p  e.  A  /\  q  e.  B ) )  -> 
( z  =  [
( p  .+  q
) ] T  -> 
z  e.  L ) )
1413adantld 453 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  ( p  e.  A  /\  q  e.  B ) )  -> 
( ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T )  ->  z  e.  L
) )
1514rexlimdvva 2759 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T )  ->  z  e.  L
) )
1615abssdv 3333 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  { z  |  E. p  e.  A  E. q  e.  B  (
( x  =  [
p ] R  /\  y  =  [ q ] S )  /\  z  =  [ ( p  .+  q ) ] T
) }  C_  L
)
17 eropr.1 . . . . . . 7  |-  J  =  ( A /. R
)
18 eropr.2 . . . . . . 7  |-  K  =  ( B /. S
)
19 eropr.4 . . . . . . 7  |-  ( ph  ->  R  Er  U )
20 eropr.5 . . . . . . 7  |-  ( ph  ->  S  Er  V )
21 eropr.6 . . . . . . 7  |-  ( ph  ->  T  Er  W )
22 eropr.7 . . . . . . 7  |-  ( ph  ->  A  C_  U )
23 eropr.8 . . . . . . 7  |-  ( ph  ->  B  C_  V )
24 eropr.9 . . . . . . 7  |-  ( ph  ->  C  C_  W )
25 eropr.11 . . . . . . 7  |-  ( (
ph  /\  ( (
r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B
) ) )  -> 
( ( r R s  /\  t S u )  ->  (
r  .+  t ) T ( s  .+  u ) ) )
2617, 18, 1, 19, 20, 21, 22, 23, 24, 3, 25eroveu 6896 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  E! z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) )
27 iotacl 5345 . . . . . 6  |-  ( E! z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T )  ->  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) )  e.  { z  |  E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) } )
2826, 27syl 15 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( iota z E. p  e.  A  E. q  e.  B  ( (
x  =  [ p ] R  /\  y  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) )  e.  {
z  |  E. p  e.  A  E. q  e.  B  ( (
x  =  [ p ] R  /\  y  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) } )
2916, 28sseldd 3267 . . . 4  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( iota z E. p  e.  A  E. q  e.  B  ( (
x  =  [ p ] R  /\  y  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) )  e.  L
)
3029ralrimivva 2720 . . 3  |-  ( ph  ->  A. x  e.  J  A. y  e.  K  ( iota z E. p  e.  A  E. q  e.  B  ( (
x  =  [ p ] R  /\  y  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) )  e.  L
)
31 eqid 2366 . . . 4  |-  ( x  e.  J ,  y  e.  K  |->  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) )  =  ( x  e.  J , 
y  e.  K  |->  ( iota z E. p  e.  A  E. q  e.  B  ( (
x  =  [ p ] R  /\  y  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) ) )
3231fmpt2 6318 . . 3  |-  ( A. x  e.  J  A. y  e.  K  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) )  e.  L  <->  ( x  e.  J ,  y  e.  K  |->  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) ) : ( J  X.  K ) --> L )
3330, 32sylib 188 . 2  |-  ( ph  ->  ( x  e.  J ,  y  e.  K  |->  ( iota z E. p  e.  A  E. q  e.  B  (
( x  =  [
p ] R  /\  y  =  [ q ] S )  /\  z  =  [ ( p  .+  q ) ] T
) ) ) : ( J  X.  K
) --> L )
34 eropr.12 . . . 4  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) }
3517, 18, 1, 19, 20, 21, 22, 23, 24, 3, 25, 34erovlem 6897 . . 3  |-  ( ph  -> 
.+^  =  ( x  e.  J ,  y  e.  K  |->  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) ) )
3635feq1d 5484 . 2  |-  ( ph  ->  (  .+^  : ( J  X.  K ) --> L  <-> 
( x  e.  J ,  y  e.  K  |->  ( iota z E. p  e.  A  E. q  e.  B  (
( x  =  [
p ] R  /\  y  =  [ q ] S )  /\  z  =  [ ( p  .+  q ) ] T
) ) ) : ( J  X.  K
) --> L ) )
3733, 36mpbird 223 1  |-  ( ph  -> 
.+^  : ( J  X.  K ) --> L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1647    e. wcel 1715   E!weu 2217   {cab 2352   A.wral 2628   E.wrex 2629    C_ wss 3238   class class class wbr 4125    X. cxp 4790   iotacio 5320   -->wf 5354  (class class class)co 5981   {coprab 5982    e. cmpt2 5983    Er wer 6799   [cec 6800   /.cqs 6801
This theorem is referenced by:  eroprf2  6901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-er 6802  df-ec 6804  df-qs 6808
  Copyright terms: Public domain W3C validator