Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  erth2 Unicode version

Theorem erth2 6705
 Description: Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth2.1
erth2.2
Assertion
Ref Expression
erth2

Proof of Theorem erth2
StepHypRef Expression
1 erth2.1 . . 3
21ersymb 6674 . 2
3 erth2.2 . . . 4
41, 3erth 6704 . . 3
5 eqcom 2285 . . 3
64, 5syl6bb 252 . 2
72, 6bitrd 244 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wceq 1623   wcel 1684   class class class wbr 4023   wer 6657  cec 6658 This theorem is referenced by:  qliftel  6741 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-er 6660  df-ec 6662
 Copyright terms: Public domain W3C validator