MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertr4d Unicode version

Theorem ertr4d 6891
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
ertr4d.5  |-  ( ph  ->  A R B )
ertr4d.6  |-  ( ph  ->  C R B )
Assertion
Ref Expression
ertr4d  |-  ( ph  ->  A R C )

Proof of Theorem ertr4d
StepHypRef Expression
1 ersymb.1 . 2  |-  ( ph  ->  R  Er  X )
2 ertr4d.5 . 2  |-  ( ph  ->  A R B )
3 ertr4d.6 . . 3  |-  ( ph  ->  C R B )
41, 3ersym 6884 . 2  |-  ( ph  ->  B R C )
51, 2, 4ertrd 6888 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   class class class wbr 4180    Er wer 6869
This theorem is referenced by:  erref  6892  erdisj  6919  nqereu  8770  nqereq  8776  efgredeu  15347  pi1xfr  19041  pi1xfrcnvlem  19042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-br 4181  df-opab 4235  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-er 6872
  Copyright terms: Public domain W3C validator