MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertrd Structured version   Unicode version

Theorem ertrd 6922
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
ertrd.5  |-  ( ph  ->  A R B )
ertrd.6  |-  ( ph  ->  B R C )
Assertion
Ref Expression
ertrd  |-  ( ph  ->  A R C )

Proof of Theorem ertrd
StepHypRef Expression
1 ertrd.5 . 2  |-  ( ph  ->  A R B )
2 ertrd.6 . 2  |-  ( ph  ->  B R C )
3 ersymb.1 . . 3  |-  ( ph  ->  R  Er  X )
43ertr 6921 . 2  |-  ( ph  ->  ( ( A R B  /\  B R C )  ->  A R C ) )
51, 2, 4mp2and 662 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   class class class wbr 4213    Er wer 6903
This theorem is referenced by:  ertr2d  6923  ertr3d  6924  ertr4d  6925  erinxp  6979  nqereq  8813  adderpq  8834  mulerpq  8835  efgred2  15386  efgcpbllemb  15388  efgcpbl2  15390  pcophtb  19055  pi1xfr  19081  pi1xfrcnvlem  19082
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pr 4404
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-br 4214  df-opab 4268  df-xp 4885  df-rel 4886  df-co 4888  df-er 6906
  Copyright terms: Public domain W3C validator