MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eu3 Structured version   Unicode version

Theorem eu3 2308
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.)
Hypothesis
Ref Expression
eu3.1  |-  F/ y
ph
Assertion
Ref Expression
eu3  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem eu3
StepHypRef Expression
1 eu3.1 . . 3  |-  F/ y
ph
21eu2 2307 . 2  |-  ( E! x ph  <->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
31mo 2304 . . 3  |-  ( E. y A. x (
ph  ->  x  =  y )  <->  A. x A. y
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
43anbi2i 677 . 2  |-  ( ( E. x ph  /\  E. y A. x (
ph  ->  x  =  y ) )  <->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
52, 4bitr4i 245 1  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   A.wal 1550   E.wex 1551   F/wnf 1554   [wsb 1659   E!weu 2282
This theorem is referenced by:  mo2  2311  eu5  2320  2eu4  2365  eqeu  3106  reu3  3125  eunex  4393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286
  Copyright terms: Public domain W3C validator