MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euanv Unicode version

Theorem euanv 2204
Description: Introduction of a conjunct into uniqueness quantifier. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
euanv  |-  ( E! x ( ph  /\  ps )  <->  ( ph  /\  E! x ps ) )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem euanv
StepHypRef Expression
1 nfv 1605 . 2  |-  F/ x ph
21euan 2200 1  |-  ( E! x ( ph  /\  ps )  <->  ( ph  /\  E! x ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   E!weu 2143
This theorem is referenced by:  eueq2  2939  2reu5lem1  2970  fsn  5696  dfac5lem5  7754
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148
  Copyright terms: Public domain W3C validator