Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eubi Structured version   Unicode version

Theorem eubi 27615
Description: Theorem *14.271 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
eubi  |-  ( A. x ( ph  <->  ps )  ->  ( E! x ph  <->  E! x ps ) )

Proof of Theorem eubi
StepHypRef Expression
1 nfa1 1807 . 2  |-  F/ x A. x ( ph  <->  ps )
2 sp 1764 . 2  |-  ( A. x ( ph  <->  ps )  ->  ( ph  <->  ps )
)
31, 2eubid 2290 1  |-  ( A. x ( ph  <->  ps )  ->  ( E! x ph  <->  E! x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178   A.wal 1550   E!weu 2283
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-11 1762
This theorem depends on definitions:  df-bi 179  df-ex 1552  df-nf 1555  df-eu 2287
  Copyright terms: Public domain W3C validator