Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eubid Structured version   Unicode version

Theorem eubid 2290
 Description: Formula-building rule for uniqueness quantifier (deduction rule). (Contributed by NM, 9-Jul-1994.)
Hypotheses
Ref Expression
eubid.1
eubid.2
Assertion
Ref Expression
eubid

Proof of Theorem eubid
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eubid.1 . . . 4
2 eubid.2 . . . . 5
32bibi1d 312 . . . 4
41, 3albid 1789 . . 3
54exbidv 1637 . 2
6 df-eu 2287 . 2
7 df-eu 2287 . 2
85, 6, 73bitr4g 281 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wal 1550  wex 1551  wnf 1554  weu 2283 This theorem is referenced by:  eubidv  2291  euor  2310  mobid  2317  euan  2340  eupickbi  2349  euor2  2351  reubida  2892  reueq1f  2904  eusv2i  4722  reusv2lem3  4728  eubi  27615 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762 This theorem depends on definitions:  df-bi 179  df-ex 1552  df-nf 1555  df-eu 2287
 Copyright terms: Public domain W3C validator