MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalgcvga Unicode version

Theorem eucalgcvga 12772
Description: Once Euclid's Algorithm halts after  N steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypotheses
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
eucalg.2  |-  R  =  seq  0 ( ( E  o.  1st ) ,  ( NN0  X.  { A } ) )
eucalgcvga.3  |-  N  =  ( 2nd `  A
)
Assertion
Ref Expression
eucalgcvga  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  N
)  ->  ( 2nd `  ( R `  K
) )  =  0 ) )
Distinct variable groups:    x, y, N    x, A, y    x, R
Allowed substitution hints:    R( y)    E( x, y)    K( x, y)

Proof of Theorem eucalgcvga
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eucalgcvga.3 . . . . . . 7  |-  N  =  ( 2nd `  A
)
2 xp2nd 6166 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( 2nd `  A )  e.  NN0 )
31, 2syl5eqel 2380 . . . . . 6  |-  ( A  e.  ( NN0  X.  NN0 )  ->  N  e. 
NN0 )
4 eluznn0 10304 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ( ZZ>= `  N ) )  ->  K  e.  NN0 )
53, 4sylan 457 . . . . 5  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  NN0 )
6 nn0uz 10278 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
7 eucalg.2 . . . . . . 7  |-  R  =  seq  0 ( ( E  o.  1st ) ,  ( NN0  X.  { A } ) )
8 0z 10051 . . . . . . . 8  |-  0  e.  ZZ
98a1i 10 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  0  e.  ZZ )
10 id 19 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  A  e.  ( NN0  X.  NN0 ) )
11 eucalgval.1 . . . . . . . . 9  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
1211eucalgf 12769 . . . . . . . 8  |-  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
1312a1i 10 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  E :
( NN0  X.  NN0 ) --> ( NN0  X.  NN0 )
)
146, 7, 9, 10, 13algrf 12759 . . . . . 6  |-  ( A  e.  ( NN0  X.  NN0 )  ->  R : NN0
--> ( NN0  X.  NN0 ) )
15 ffvelrn 5679 . . . . . 6  |-  ( ( R : NN0 --> ( NN0 
X.  NN0 )  /\  K  e.  NN0 )  ->  ( R `  K )  e.  ( NN0  X.  NN0 ) )
1614, 15sylan 457 . . . . 5  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  NN0 )  ->  ( R `  K )  e.  ( NN0  X.  NN0 ) )
175, 16syldan 456 . . . 4  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( R `  K )  e.  ( NN0  X.  NN0 )
)
18 fvres 5558 . . . 4  |-  ( ( R `  K )  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  ( R `  K ) )  =  ( 2nd `  ( R `  K
) ) )
1917, 18syl 15 . . 3  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  ( R `  K )
)  =  ( 2nd `  ( R `  K
) ) )
20 simpl 443 . . . 4  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  A  e.  ( NN0  X.  NN0 )
)
21 fvres 5558 . . . . . . . 8  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  A )  =  ( 2nd `  A ) )
2221, 1syl6eqr 2346 . . . . . . 7  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  A )  =  N )
2322fveq2d 5545 . . . . . 6  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( ZZ>= `  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 A ) )  =  ( ZZ>= `  N
) )
2423eleq2d 2363 . . . . 5  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  (
( 2nd  |`  ( NN0 
X.  NN0 ) ) `  A ) )  <->  K  e.  ( ZZ>= `  N )
) )
2524biimpar 471 . . . 4  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  ( ZZ>= `  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  A
) ) )
26 f2ndres 6158 . . . . 5  |-  ( 2nd  |`  ( NN0  X.  NN0 ) ) : ( NN0  X.  NN0 ) --> NN0
2711eucalglt 12771 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd `  ( E `
 z ) )  =/=  0  ->  ( 2nd `  ( E `  z ) )  < 
( 2nd `  z
) ) )
2812ffvelrni 5680 . . . . . . . 8  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( E `
 z )  e.  ( NN0  X.  NN0 ) )
29 fvres 5558 . . . . . . . 8  |-  ( ( E `  z )  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  ( E `  z ) )  =  ( 2nd `  ( E `  z
) ) )
3028, 29syl 15 . . . . . . 7  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  ( E `  z ) )  =  ( 2nd `  ( E `  z
) ) )
3130neeq1d 2472 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( E `  z ) )  =/=  0  <->  ( 2nd `  ( E `  z )
)  =/=  0 ) )
32 fvres 5558 . . . . . . 7  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  z )  =  ( 2nd `  z ) )
3330, 32breq12d 4052 . . . . . 6  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( E `  z ) )  < 
( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 z )  <->  ( 2nd `  ( E `  z
) )  <  ( 2nd `  z ) ) )
3427, 31, 333imtr4d 259 . . . . 5  |-  ( z  e.  ( NN0  X.  NN0 )  ->  ( ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( E `  z ) )  =/=  0  ->  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  ( E `  z )
)  <  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  z
) ) )
35 eqid 2296 . . . . 5  |-  ( ( 2nd  |`  ( NN0  X. 
NN0 ) ) `  A )  =  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 A )
3612, 7, 26, 34, 35algcvga 12765 . . . 4  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  (
( 2nd  |`  ( NN0 
X.  NN0 ) ) `  A ) )  -> 
( ( 2nd  |`  ( NN0  X.  NN0 ) ) `
 ( R `  K ) )  =  0 ) )
3720, 25, 36sylc 56 . . 3  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( 2nd  |`  ( NN0  X.  NN0 ) ) `  ( R `  K )
)  =  0 )
3819, 37eqtr3d 2330 . 2  |-  ( ( A  e.  ( NN0 
X.  NN0 )  /\  K  e.  ( ZZ>= `  N )
)  ->  ( 2nd `  ( R `  K
) )  =  0 )
3938ex 423 1  |-  ( A  e.  ( NN0  X.  NN0 )  ->  ( K  e.  ( ZZ>= `  N
)  ->  ( 2nd `  ( R `  K
) )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   ifcif 3578   {csn 3653   <.cop 3656   class class class wbr 4039    X. cxp 4703    |` cres 4707    o. ccom 4709   -->wf 5267   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   1stc1st 6136   2ndc2nd 6137   0cc0 8753    < clt 8883   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246    mod cmo 10989    seq cseq 11062
This theorem is referenced by:  eucalg  12773
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fl 10941  df-mod 10990  df-seq 11063
  Copyright terms: Public domain W3C validator