MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eueq2 Unicode version

Theorem eueq2 2939
Description: Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995.)
Hypotheses
Ref Expression
eueq2.1  |-  A  e. 
_V
eueq2.2  |-  B  e. 
_V
Assertion
Ref Expression
eueq2  |-  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B )
)
Distinct variable groups:    ph, x    x, A    x, B

Proof of Theorem eueq2
StepHypRef Expression
1 notnot1 114 . . . 4  |-  ( ph  ->  -.  -.  ph )
2 eueq2.1 . . . . . 6  |-  A  e. 
_V
32eueq1 2938 . . . . 5  |-  E! x  x  =  A
4 euanv 2204 . . . . . 6  |-  ( E! x ( ph  /\  x  =  A )  <->  (
ph  /\  E! x  x  =  A )
)
54biimpri 197 . . . . 5  |-  ( (
ph  /\  E! x  x  =  A )  ->  E! x ( ph  /\  x  =  A ) )
63, 5mpan2 652 . . . 4  |-  ( ph  ->  E! x ( ph  /\  x  =  A ) )
7 euorv 2171 . . . 4  |-  ( ( -.  -.  ph  /\  E! x ( ph  /\  x  =  A )
)  ->  E! x
( -.  ph  \/  ( ph  /\  x  =  A ) ) )
81, 6, 7syl2anc 642 . . 3  |-  ( ph  ->  E! x ( -. 
ph  \/  ( ph  /\  x  =  A ) ) )
9 orcom 376 . . . . 5  |-  ( ( -.  ph  \/  ( ph  /\  x  =  A ) )  <->  ( ( ph  /\  x  =  A )  \/  -.  ph ) )
101bianfd 892 . . . . . 6  |-  ( ph  ->  ( -.  ph  <->  ( -.  ph 
/\  x  =  B ) ) )
1110orbi2d 682 . . . . 5  |-  ( ph  ->  ( ( ( ph  /\  x  =  A )  \/  -.  ph )  <->  ( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B ) ) ) )
129, 11syl5bb 248 . . . 4  |-  ( ph  ->  ( ( -.  ph  \/  ( ph  /\  x  =  A ) )  <->  ( ( ph  /\  x  =  A )  \/  ( -. 
ph  /\  x  =  B ) ) ) )
1312eubidv 2151 . . 3  |-  ( ph  ->  ( E! x ( -.  ph  \/  ( ph  /\  x  =  A ) )  <->  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B )
) ) )
148, 13mpbid 201 . 2  |-  ( ph  ->  E! x ( (
ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B ) ) )
15 eueq2.2 . . . . . 6  |-  B  e. 
_V
1615eueq1 2938 . . . . 5  |-  E! x  x  =  B
17 euanv 2204 . . . . . 6  |-  ( E! x ( -.  ph  /\  x  =  B )  <-> 
( -.  ph  /\  E! x  x  =  B ) )
1817biimpri 197 . . . . 5  |-  ( ( -.  ph  /\  E! x  x  =  B )  ->  E! x ( -. 
ph  /\  x  =  B ) )
1916, 18mpan2 652 . . . 4  |-  ( -. 
ph  ->  E! x ( -.  ph  /\  x  =  B ) )
20 euorv 2171 . . . 4  |-  ( ( -.  ph  /\  E! x
( -.  ph  /\  x  =  B )
)  ->  E! x
( ph  \/  ( -.  ph  /\  x  =  B ) ) )
2119, 20mpdan 649 . . 3  |-  ( -. 
ph  ->  E! x (
ph  \/  ( -.  ph 
/\  x  =  B ) ) )
22 id 19 . . . . . 6  |-  ( -. 
ph  ->  -.  ph )
2322bianfd 892 . . . . 5  |-  ( -. 
ph  ->  ( ph  <->  ( ph  /\  x  =  A ) ) )
2423orbi1d 683 . . . 4  |-  ( -. 
ph  ->  ( ( ph  \/  ( -.  ph  /\  x  =  B )
)  <->  ( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B ) ) ) )
2524eubidv 2151 . . 3  |-  ( -. 
ph  ->  ( E! x
( ph  \/  ( -.  ph  /\  x  =  B ) )  <->  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B )
) ) )
2621, 25mpbid 201 . 2  |-  ( -. 
ph  ->  E! x ( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B ) ) )
2714, 26pm2.61i 156 1  |-  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ph  /\  x  =  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   E!weu 2143   _Vcvv 2788
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-v 2790
  Copyright terms: Public domain W3C validator