MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euf Structured version   Unicode version

Theorem euf 2289
Description: A version of the existential uniqueness definition with a hypothesis instead of a distinct variable condition. (Contributed by NM, 12-Aug-1993.)
Hypothesis
Ref Expression
euf.1  |-  F/ y
ph
Assertion
Ref Expression
euf  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem euf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 2287 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 euf.1 . . . . 5  |-  F/ y
ph
3 nfv 1630 . . . . 5  |-  F/ y  x  =  z
42, 3nfbi 1857 . . . 4  |-  F/ y ( ph  <->  x  =  z )
54nfal 1865 . . 3  |-  F/ y A. x ( ph  <->  x  =  z )
6 nfv 1630 . . . . 5  |-  F/ z
ph
7 nfv 1630 . . . . 5  |-  F/ z  x  =  y
86, 7nfbi 1857 . . . 4  |-  F/ z ( ph  <->  x  =  y )
98nfal 1865 . . 3  |-  F/ z A. x ( ph  <->  x  =  y )
10 equequ2 1699 . . . . 5  |-  ( z  =  y  ->  (
x  =  z  <->  x  =  y ) )
1110bibi2d 311 . . . 4  |-  ( z  =  y  ->  (
( ph  <->  x  =  z
)  <->  ( ph  <->  x  =  y ) ) )
1211albidv 1636 . . 3  |-  ( z  =  y  ->  ( A. x ( ph  <->  x  =  z )  <->  A. x
( ph  <->  x  =  y
) ) )
135, 9, 12cbvex 1984 . 2  |-  ( E. z A. x (
ph 
<->  x  =  z )  <->  E. y A. x (
ph 
<->  x  =  y ) )
141, 13bitri 242 1  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178   A.wal 1550   E.wex 1551   F/wnf 1554   E!weu 2283
This theorem is referenced by:  eu1  2304  eumo0  2307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-eu 2287
  Copyright terms: Public domain W3C validator