MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eumo0 Structured version   Unicode version

Theorem eumo0 2305
Description: Existential uniqueness implies "at most one." (Contributed by NM, 8-Jul-1994.)
Hypothesis
Ref Expression
eumo0.1  |-  F/ y
ph
Assertion
Ref Expression
eumo0  |-  ( E! x ph  ->  E. y A. x ( ph  ->  x  =  y ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem eumo0
StepHypRef Expression
1 eumo0.1 . . 3  |-  F/ y
ph
21euf 2287 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
3 bi1 179 . . . 4  |-  ( (
ph 
<->  x  =  y )  ->  ( ph  ->  x  =  y ) )
43alimi 1568 . . 3  |-  ( A. x ( ph  <->  x  =  y )  ->  A. x
( ph  ->  x  =  y ) )
54eximi 1585 . 2  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  E. y A. x
( ph  ->  x  =  y ) )
62, 5sylbi 188 1  |-  ( E! x ph  ->  E. y A. x ( ph  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1549   E.wex 1550   F/wnf 1553   E!weu 2281
This theorem is referenced by:  eu2  2306  mo2  2310
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-eu 2285
  Copyright terms: Public domain W3C validator