MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eumoi Structured version   Unicode version

Theorem eumoi 2324
Description: "At most one" inferred from existential uniqueness. (Contributed by NM, 5-Apr-1995.)
Hypothesis
Ref Expression
eumoi.1  |-  E! x ph
Assertion
Ref Expression
eumoi  |-  E* x ph

Proof of Theorem eumoi
StepHypRef Expression
1 eumoi.1 . 2  |-  E! x ph
2 eumo 2323 . 2  |-  ( E! x ph  ->  E* x ph )
31, 2ax-mp 5 1  |-  E* x ph
Colors of variables: wff set class
Syntax hints:   E!weu 2283   E*wmo 2284
This theorem is referenced by:  euxfr  3122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288
  Copyright terms: Public domain W3C validator