Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eunex Unicode version

Theorem eunex 4219
 Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010.)
Assertion
Ref Expression
eunex

Proof of Theorem eunex
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dtru 4217 . . . . 5
2 alim 1548 . . . . 5
31, 2mtoi 169 . . . 4
43exlimiv 1624 . . 3
54adantl 452 . 2
6 nfv 1609 . . 3
76eu3 2182 . 2
8 exnal 1564 . 2
95, 7, 83imtr4i 257 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 358  wal 1530  wex 1531   wceq 1632  weu 2156 This theorem is referenced by:  reusv2lem2  4552  unnt  24919  amosym1  24937  alneu  28082 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-nul 4165  ax-pow 4204 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160
 Copyright terms: Public domain W3C validator