MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupagra Unicode version

Theorem eupagra 21536
Description: If an eulerian path exists, then  <. V ,  E >. is a graph. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
eupagra  |-  ( F ( V EulPaths  E ) P  ->  V UMGrph  E )

Proof of Theorem eupagra
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2387 . . 3  |-  dom  E  =  dom  E
2 iseupa 21535 . . 3  |-  ( dom 
E  =  dom  E  ->  ( F ( V EulPaths  E ) P  <->  ( V UMGrph  E  /\  E. n  e. 
NN0  ( F :
( 1 ... n
)
-1-1-onto-> dom  E  /\  P :
( 0 ... n
) --> V  /\  A. k  e.  ( 1 ... n ) ( E `  ( F `
 k ) )  =  { ( P `
 ( k  - 
1 ) ) ,  ( P `  k
) } ) ) ) )
31, 2ax-mp 8 . 2  |-  ( F ( V EulPaths  E ) P 
<->  ( V UMGrph  E  /\  E. n  e.  NN0  ( F : ( 1 ... n ) -1-1-onto-> dom  E  /\  P : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n ) ( E `  ( F `
 k ) )  =  { ( P `
 ( k  - 
1 ) ) ,  ( P `  k
) } ) ) )
43simplbi 447 1  |-  ( F ( V EulPaths  E ) P  ->  V UMGrph  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649   A.wral 2649   E.wrex 2650   {cpr 3758   class class class wbr 4153   dom cdm 4818   -->wf 5390   -1-1-onto->wf1o 5393   ` cfv 5394  (class class class)co 6020   0cc0 8923   1c1 8924    - cmin 9223   NN0cn0 10153   ...cfz 10975   UMGrph cumg 21214   EulPaths ceup 21532
This theorem is referenced by:  eupacl  21539  eupapf  21542  eupaseg  21543  eupares  21545  eupap1  21546  eupath2lem3  21549  eupath2  21550  eupath  21551
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-pm 6957  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-n0 10154  df-z 10215  df-uz 10421  df-fz 10976  df-umgra 21215  df-eupa 21533
  Copyright terms: Public domain W3C validator