Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eupai Unicode version

Theorem eupai 23883
Description: Properties of an Eulerian path. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
eupai  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  (
( ( # `  F
)  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) )
Distinct variable groups:    A, k    k, E    k, F    P, k    k, V

Proof of Theorem eupai
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 fndm 5343 . . . . 5  |-  ( E  Fn  A  ->  dom  E  =  A )
2 iseupa 23881 . . . . 5  |-  ( dom 
E  =  A  -> 
( F ( V EulPaths  E ) P  <->  ( V UMGrph  E  /\  E. n  e. 
NN0  ( F :
( 1 ... n
)
-1-1-onto-> A  /\  P : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n
) ( E `  ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) ) ) )
31, 2syl 15 . . . 4  |-  ( E  Fn  A  ->  ( F ( V EulPaths  E ) P  <->  ( V UMGrph  E  /\  E. n  e.  NN0  ( F : ( 1 ... n ) -1-1-onto-> A  /\  P : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n ) ( E `  ( F `
 k ) )  =  { ( P `
 ( k  - 
1 ) ) ,  ( P `  k
) } ) ) ) )
43biimpac 472 . . 3  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  ( V UMGrph  E  /\  E. n  e.  NN0  ( F :
( 1 ... n
)
-1-1-onto-> A  /\  P : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n
) ( E `  ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) ) )
54simprd 449 . 2  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  E. n  e.  NN0  ( F :
( 1 ... n
)
-1-1-onto-> A  /\  P : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n
) ( E `  ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) )
6 f1ofn 5473 . . . . . . . . . . . . . 14  |-  ( F : ( 1 ... n ) -1-1-onto-> A  ->  F  Fn  ( 1 ... n
) )
76ad2antll 709 . . . . . . . . . . . . 13  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  F  Fn  ( 1 ... n
) )
8 fzfid 11035 . . . . . . . . . . . . 13  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( 1 ... n )  e. 
Fin )
9 fndmeng 6937 . . . . . . . . . . . . 13  |-  ( ( F  Fn  ( 1 ... n )  /\  ( 1 ... n
)  e.  Fin )  ->  ( 1 ... n
)  ~~  F )
107, 8, 9syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( 1 ... n )  ~~  F )
11 enfi 7079 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... n ) 
~~  F  ->  (
( 1 ... n
)  e.  Fin  <->  F  e.  Fin ) )
1210, 11syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( (
1 ... n )  e. 
Fin 
<->  F  e.  Fin )
)
138, 12mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  F  e.  Fin )
14 hashen 11346 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... n
)  e.  Fin  /\  F  e.  Fin )  ->  ( ( # `  (
1 ... n ) )  =  ( # `  F
)  <->  ( 1 ... n )  ~~  F
) )
158, 13, 14syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( ( # `
 ( 1 ... n ) )  =  ( # `  F
)  <->  ( 1 ... n )  ~~  F
) )
1610, 15mpbird 223 . . . . . . . . . . 11  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( # `  (
1 ... n ) )  =  ( # `  F
) )
17 hashfz1 11345 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( # `  ( 1 ... n
) )  =  n )
1817ad2antrl 708 . . . . . . . . . . 11  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( # `  (
1 ... n ) )  =  n )
1916, 18eqtr3d 2317 . . . . . . . . . 10  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( # `  F
)  =  n )
20 simprl 732 . . . . . . . . . 10  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  n  e.  NN0 )
2119, 20eqeltrd 2357 . . . . . . . . 9  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( # `  F
)  e.  NN0 )
2221a1d 22 . . . . . . . 8  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( P : ( 0 ... n ) --> V  -> 
( # `  F )  e.  NN0 ) )
23 simprr 733 . . . . . . . . . 10  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  F :
( 1 ... n
)
-1-1-onto-> A )
2419oveq2d 5874 . . . . . . . . . . 11  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( 1 ... ( # `  F
) )  =  ( 1 ... n ) )
25 f1oeq2 5464 . . . . . . . . . . 11  |-  ( ( 1 ... ( # `  F ) )  =  ( 1 ... n
)  ->  ( F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  <->  F : ( 1 ... n ) -1-1-onto-> A ) )
2624, 25syl 15 . . . . . . . . . 10  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  <->  F : ( 1 ... n ) -1-1-onto-> A ) )
2723, 26mpbird 223 . . . . . . . . 9  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  F :
( 1 ... ( # `
 F ) ) -1-1-onto-> A )
2827a1d 22 . . . . . . . 8  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( P : ( 0 ... n ) --> V  ->  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A ) )
2919oveq2d 5874 . . . . . . . . . 10  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( 0 ... ( # `  F
) )  =  ( 0 ... n ) )
3029feq2d 5380 . . . . . . . . 9  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( P : ( 0 ... ( # `  F
) ) --> V  <->  P :
( 0 ... n
) --> V ) )
3130biimprd 214 . . . . . . . 8  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( P : ( 0 ... n ) --> V  ->  P : ( 0 ... ( # `  F
) ) --> V ) )
3222, 28, 313jcad 1133 . . . . . . 7  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( P : ( 0 ... n ) --> V  -> 
( ( # `  F
)  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V ) ) )
3324raleqdv 2742 . . . . . . . 8  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) }  <->  A. k  e.  ( 1 ... n ) ( E `  ( F `  k )
)  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) )
3433biimprd 214 . . . . . . 7  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( A. k  e.  ( 1 ... n ) ( E `  ( F `
 k ) )  =  { ( P `
 ( k  - 
1 ) ) ,  ( P `  k
) }  ->  A. k  e.  ( 1 ... ( # `
 F ) ) ( E `  ( F `  k )
)  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) )
3532, 34anim12d 546 . . . . . 6  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( ( P : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n ) ( E `  ( F `
 k ) )  =  { ( P `
 ( k  - 
1 ) ) ,  ( P `  k
) } )  -> 
( ( ( # `  F )  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) ) )
3635exp3a 425 . . . . 5  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( P : ( 0 ... n ) --> V  -> 
( A. k  e.  ( 1 ... n
) ( E `  ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) }  ->  ( ( ( # `  F
)  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) ) ) )
3736expr 598 . . . 4  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  n  e.  NN0 )  ->  ( F :
( 1 ... n
)
-1-1-onto-> A  ->  ( P :
( 0 ... n
) --> V  ->  ( A. k  e.  (
1 ... n ) ( E `  ( F `
 k ) )  =  { ( P `
 ( k  - 
1 ) ) ,  ( P `  k
) }  ->  (
( ( # `  F
)  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) ) ) ) )
38373impd 1165 . . 3  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  n  e.  NN0 )  ->  ( ( F : ( 1 ... n ) -1-1-onto-> A  /\  P :
( 0 ... n
) --> V  /\  A. k  e.  ( 1 ... n ) ( E `  ( F `
 k ) )  =  { ( P `
 ( k  - 
1 ) ) ,  ( P `  k
) } )  -> 
( ( ( # `  F )  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) ) )
3938rexlimdva 2667 . 2  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  ( E. n  e.  NN0  ( F : ( 1 ... n ) -1-1-onto-> A  /\  P : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n ) ( E `  ( F `
 k ) )  =  { ( P `
 ( k  - 
1 ) ) ,  ( P `  k
) } )  -> 
( ( ( # `  F )  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) ) )
405, 39mpd 14 1  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  (
( ( # `  F
)  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {cpr 3641   class class class wbr 4023   dom cdm 4689    Fn wfn 5250   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858    ~~ cen 6860   Fincfn 6863   0cc0 8737   1c1 8738    - cmin 9037   NN0cn0 9965   ...cfz 10782   #chash 11337   UMGrph cumg 23860   EulPaths ceup 23861
This theorem is referenced by:  eupacl  23884  eupaf1o  23885  eupapf  23887  eupaseg  23888
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-hash 11338  df-umgra 23863  df-eupa 23864
  Copyright terms: Public domain W3C validator