MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupai Unicode version

Theorem eupai 21538
Description: Properties of an Eulerian path. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
eupai  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  (
( ( # `  F
)  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) )
Distinct variable groups:    A, k    k, E    k, F    P, k    k, V

Proof of Theorem eupai
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 fndm 5485 . . . . 5  |-  ( E  Fn  A  ->  dom  E  =  A )
2 iseupa 21536 . . . . 5  |-  ( dom 
E  =  A  -> 
( F ( V EulPaths  E ) P  <->  ( V UMGrph  E  /\  E. n  e. 
NN0  ( F :
( 1 ... n
)
-1-1-onto-> A  /\  P : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n
) ( E `  ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) ) ) )
31, 2syl 16 . . . 4  |-  ( E  Fn  A  ->  ( F ( V EulPaths  E ) P  <->  ( V UMGrph  E  /\  E. n  e.  NN0  ( F : ( 1 ... n ) -1-1-onto-> A  /\  P : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n ) ( E `  ( F `
 k ) )  =  { ( P `
 ( k  - 
1 ) ) ,  ( P `  k
) } ) ) ) )
43biimpac 473 . . 3  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  ( V UMGrph  E  /\  E. n  e.  NN0  ( F :
( 1 ... n
)
-1-1-onto-> A  /\  P : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n
) ( E `  ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) ) )
54simprd 450 . 2  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  E. n  e.  NN0  ( F :
( 1 ... n
)
-1-1-onto-> A  /\  P : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n
) ( E `  ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) )
6 f1ofn 5616 . . . . . . . . . . . . . 14  |-  ( F : ( 1 ... n ) -1-1-onto-> A  ->  F  Fn  ( 1 ... n
) )
76ad2antll 710 . . . . . . . . . . . . 13  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  F  Fn  ( 1 ... n
) )
8 fzfid 11240 . . . . . . . . . . . . 13  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( 1 ... n )  e. 
Fin )
9 fndmeng 7120 . . . . . . . . . . . . 13  |-  ( ( F  Fn  ( 1 ... n )  /\  ( 1 ... n
)  e.  Fin )  ->  ( 1 ... n
)  ~~  F )
107, 8, 9syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( 1 ... n )  ~~  F )
11 enfi 7262 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... n ) 
~~  F  ->  (
( 1 ... n
)  e.  Fin  <->  F  e.  Fin ) )
1210, 11syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( (
1 ... n )  e. 
Fin 
<->  F  e.  Fin )
)
138, 12mpbid 202 . . . . . . . . . . . . 13  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  F  e.  Fin )
14 hashen 11559 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... n
)  e.  Fin  /\  F  e.  Fin )  ->  ( ( # `  (
1 ... n ) )  =  ( # `  F
)  <->  ( 1 ... n )  ~~  F
) )
158, 13, 14syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( ( # `
 ( 1 ... n ) )  =  ( # `  F
)  <->  ( 1 ... n )  ~~  F
) )
1610, 15mpbird 224 . . . . . . . . . . 11  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( # `  (
1 ... n ) )  =  ( # `  F
) )
17 hashfz1 11558 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( # `  ( 1 ... n
) )  =  n )
1817ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( # `  (
1 ... n ) )  =  n )
1916, 18eqtr3d 2422 . . . . . . . . . 10  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( # `  F
)  =  n )
20 simprl 733 . . . . . . . . . 10  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  n  e.  NN0 )
2119, 20eqeltrd 2462 . . . . . . . . 9  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( # `  F
)  e.  NN0 )
2221a1d 23 . . . . . . . 8  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( P : ( 0 ... n ) --> V  -> 
( # `  F )  e.  NN0 ) )
23 simprr 734 . . . . . . . . . 10  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  F :
( 1 ... n
)
-1-1-onto-> A )
2419oveq2d 6037 . . . . . . . . . . 11  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( 1 ... ( # `  F
) )  =  ( 1 ... n ) )
25 f1oeq2 5607 . . . . . . . . . . 11  |-  ( ( 1 ... ( # `  F ) )  =  ( 1 ... n
)  ->  ( F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  <->  F : ( 1 ... n ) -1-1-onto-> A ) )
2624, 25syl 16 . . . . . . . . . 10  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  <->  F : ( 1 ... n ) -1-1-onto-> A ) )
2723, 26mpbird 224 . . . . . . . . 9  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  F :
( 1 ... ( # `
 F ) ) -1-1-onto-> A )
2827a1d 23 . . . . . . . 8  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( P : ( 0 ... n ) --> V  ->  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A ) )
2919oveq2d 6037 . . . . . . . . . 10  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( 0 ... ( # `  F
) )  =  ( 0 ... n ) )
3029feq2d 5522 . . . . . . . . 9  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( P : ( 0 ... ( # `  F
) ) --> V  <->  P :
( 0 ... n
) --> V ) )
3130biimprd 215 . . . . . . . 8  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( P : ( 0 ... n ) --> V  ->  P : ( 0 ... ( # `  F
) ) --> V ) )
3222, 28, 313jcad 1135 . . . . . . 7  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( P : ( 0 ... n ) --> V  -> 
( ( # `  F
)  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V ) ) )
3324raleqdv 2854 . . . . . . . 8  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) }  <->  A. k  e.  ( 1 ... n ) ( E `  ( F `  k )
)  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) )
3433biimprd 215 . . . . . . 7  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( A. k  e.  ( 1 ... n ) ( E `  ( F `
 k ) )  =  { ( P `
 ( k  - 
1 ) ) ,  ( P `  k
) }  ->  A. k  e.  ( 1 ... ( # `
 F ) ) ( E `  ( F `  k )
)  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) )
3532, 34anim12d 547 . . . . . 6  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( ( P : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n ) ( E `  ( F `
 k ) )  =  { ( P `
 ( k  - 
1 ) ) ,  ( P `  k
) } )  -> 
( ( ( # `  F )  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) ) )
3635exp3a 426 . . . . 5  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  ( n  e.  NN0  /\  F : ( 1 ... n ) -1-1-onto-> A ) )  ->  ( P : ( 0 ... n ) --> V  -> 
( A. k  e.  ( 1 ... n
) ( E `  ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) }  ->  ( ( ( # `  F
)  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) ) ) )
3736expr 599 . . . 4  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  n  e.  NN0 )  ->  ( F :
( 1 ... n
)
-1-1-onto-> A  ->  ( P :
( 0 ... n
) --> V  ->  ( A. k  e.  (
1 ... n ) ( E `  ( F `
 k ) )  =  { ( P `
 ( k  - 
1 ) ) ,  ( P `  k
) }  ->  (
( ( # `  F
)  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) ) ) ) )
38373impd 1167 . . 3  |-  ( ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  /\  n  e.  NN0 )  ->  ( ( F : ( 1 ... n ) -1-1-onto-> A  /\  P :
( 0 ... n
) --> V  /\  A. k  e.  ( 1 ... n ) ( E `  ( F `
 k ) )  =  { ( P `
 ( k  - 
1 ) ) ,  ( P `  k
) } )  -> 
( ( ( # `  F )  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) ) )
3938rexlimdva 2774 . 2  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  ( E. n  e.  NN0  ( F : ( 1 ... n ) -1-1-onto-> A  /\  P : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n ) ( E `  ( F `
 k ) )  =  { ( P `
 ( k  - 
1 ) ) ,  ( P `  k
) } )  -> 
( ( ( # `  F )  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) ) )
405, 39mpd 15 1  |-  ( ( F ( V EulPaths  E ) P  /\  E  Fn  A )  ->  (
( ( # `  F
)  e.  NN0  /\  F : ( 1 ... ( # `  F
) ) -1-1-onto-> A  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  A. k  e.  ( 1 ... ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2650   E.wrex 2651   {cpr 3759   class class class wbr 4154   dom cdm 4819    Fn wfn 5390   -->wf 5391   -1-1-onto->wf1o 5394   ` cfv 5395  (class class class)co 6021    ~~ cen 7043   Fincfn 7046   0cc0 8924   1c1 8925    - cmin 9224   NN0cn0 10154   ...cfz 10976   #chash 11546   UMGrph cumg 21215   EulPaths ceup 21533
This theorem is referenced by:  eupacl  21540  eupaf1o  21541  eupapf  21543  eupaseg  21544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-er 6842  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-card 7760  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-nn 9934  df-n0 10155  df-z 10216  df-uz 10422  df-fz 10977  df-hash 11547  df-umgra 21216  df-eupa 21534
  Copyright terms: Public domain W3C validator