Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eupap1 Unicode version

Theorem eupap1 23900
Description: Append one path segment to an Eulerian path (enlarging the graph to add the new edge). (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
eupap1.e  |-  ( ph  ->  E  Fn  A )
eupap1.a  |-  ( ph  ->  A  e.  Fin )
eupap1.b  |-  ( ph  ->  B  e.  _V )
eupap1.c  |-  ( ph  ->  C  e.  V )
eupap1.d  |-  ( ph  ->  -.  B  e.  A
)
eupap1.g  |-  ( ph  ->  G ( V EulPaths  E ) P )
eupap1.n  |-  ( ph  ->  N  =  ( # `  G ) )
eupap1.f  |-  F  =  ( E  u.  { <. B ,  { ( P `  N ) ,  C } >. } )
eupap1.h  |-  H  =  ( G  u.  { <. ( N  +  1 ) ,  B >. } )
eupap1.q  |-  Q  =  ( P  u.  { <. ( N  +  1 ) ,  C >. } )
Assertion
Ref Expression
eupap1  |-  ( ph  ->  H ( V EulPaths  F ) Q )

Proof of Theorem eupap1
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eupap1.e . . . 4  |-  ( ph  ->  E  Fn  A )
2 eupap1.b . . . . . 6  |-  ( ph  ->  B  e.  _V )
3 prex 4217 . . . . . 6  |-  { ( P `  N ) ,  C }  e.  _V
4 f1osng 5514 . . . . . 6  |-  ( ( B  e.  _V  /\  { ( P `  N
) ,  C }  e.  _V )  ->  { <. B ,  { ( P `
 N ) ,  C } >. } : { B } -1-1-onto-> { { ( P `
 N ) ,  C } } )
52, 3, 4sylancl 643 . . . . 5  |-  ( ph  ->  { <. B ,  {
( P `  N
) ,  C } >. } : { B }
-1-1-onto-> { { ( P `  N ) ,  C } } )
6 f1ofn 5473 . . . . 5  |-  ( {
<. B ,  { ( P `  N ) ,  C } >. } : { B } -1-1-onto-> { { ( P `  N ) ,  C } }  ->  { <. B ,  { ( P `
 N ) ,  C } >. }  Fn  { B } )
75, 6syl 15 . . . 4  |-  ( ph  ->  { <. B ,  {
( P `  N
) ,  C } >. }  Fn  { B } )
8 eupap1.d . . . . 5  |-  ( ph  ->  -.  B  e.  A
)
9 disjsn 3693 . . . . 5  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )
108, 9sylibr 203 . . . 4  |-  ( ph  ->  ( A  i^i  { B } )  =  (/) )
11 eupap1.g . . . . 5  |-  ( ph  ->  G ( V EulPaths  E ) P )
12 eupagra 23882 . . . . 5  |-  ( G ( V EulPaths  E ) P  ->  V UMGrph  E )
1311, 12syl 15 . . . 4  |-  ( ph  ->  V UMGrph  E )
14 relumgra 23866 . . . . . . 7  |-  Rel UMGrph
1514brrelexi 4729 . . . . . 6  |-  ( V UMGrph  E  ->  V  e.  _V )
1613, 15syl 15 . . . . 5  |-  ( ph  ->  V  e.  _V )
17 eupapf 23887 . . . . . . 7  |-  ( G ( V EulPaths  E ) P  ->  P : ( 0 ... ( # `  G ) ) --> V )
1811, 17syl 15 . . . . . 6  |-  ( ph  ->  P : ( 0 ... ( # `  G
) ) --> V )
19 eupap1.n . . . . . . . . . 10  |-  ( ph  ->  N  =  ( # `  G ) )
20 eupacl 23884 . . . . . . . . . . 11  |-  ( G ( V EulPaths  E ) P  ->  ( # `  G
)  e.  NN0 )
2111, 20syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( # `  G
)  e.  NN0 )
2219, 21eqeltrd 2357 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
23 nn0uz 10262 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
2422, 23syl6eleq 2373 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
25 eluzfz2 10804 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  0
)  ->  N  e.  ( 0 ... N
) )
2624, 25syl 15 . . . . . . 7  |-  ( ph  ->  N  e.  ( 0 ... N ) )
2719oveq2d 5874 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  =  ( 0 ... ( # `  G
) ) )
2826, 27eleqtrd 2359 . . . . . 6  |-  ( ph  ->  N  e.  ( 0 ... ( # `  G
) ) )
29 ffvelrn 5663 . . . . . 6  |-  ( ( P : ( 0 ... ( # `  G
) ) --> V  /\  N  e.  ( 0 ... ( # `  G
) ) )  -> 
( P `  N
)  e.  V )
3018, 28, 29syl2anc 642 . . . . 5  |-  ( ph  ->  ( P `  N
)  e.  V )
31 eupap1.c . . . . 5  |-  ( ph  ->  C  e.  V )
32 umgra1 23878 . . . . 5  |-  ( ( ( V  e.  _V  /\  B  e.  _V )  /\  ( ( P `  N )  e.  V  /\  C  e.  V
) )  ->  V UMGrph  {
<. B ,  { ( P `  N ) ,  C } >. } )
3316, 2, 30, 31, 32syl22anc 1183 . . . 4  |-  ( ph  ->  V UMGrph  { <. B ,  {
( P `  N
) ,  C } >. } )
341, 7, 10, 13, 33umgraun 23879 . . 3  |-  ( ph  ->  V UMGrph  ( E  u.  {
<. B ,  { ( P `  N ) ,  C } >. } ) )
35 eupap1.f . . 3  |-  F  =  ( E  u.  { <. B ,  { ( P `  N ) ,  C } >. } )
3634, 35syl6breqr 4063 . 2  |-  ( ph  ->  V UMGrph  F )
37 peano2nn0 10004 . . . 4  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
3822, 37syl 15 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
39 eupaf1o 23885 . . . . . . . 8  |-  ( ( G ( V EulPaths  E ) P  /\  E  Fn  A )  ->  G : ( 1 ... ( # `  G
) ) -1-1-onto-> A )
4011, 1, 39syl2anc 642 . . . . . . 7  |-  ( ph  ->  G : ( 1 ... ( # `  G
) ) -1-1-onto-> A )
4119oveq2d 5874 . . . . . . . 8  |-  ( ph  ->  ( 1 ... N
)  =  ( 1 ... ( # `  G
) ) )
42 f1oeq2 5464 . . . . . . . 8  |-  ( ( 1 ... N )  =  ( 1 ... ( # `  G
) )  ->  ( G : ( 1 ... N ) -1-1-onto-> A  <->  G : ( 1 ... ( # `  G
) ) -1-1-onto-> A ) )
4341, 42syl 15 . . . . . . 7  |-  ( ph  ->  ( G : ( 1 ... N ) -1-1-onto-> A  <-> 
G : ( 1 ... ( # `  G
) ) -1-1-onto-> A ) )
4440, 43mpbird 223 . . . . . 6  |-  ( ph  ->  G : ( 1 ... N ) -1-1-onto-> A )
45 f1osng 5514 . . . . . . 7  |-  ( ( ( N  +  1 )  e.  NN0  /\  B  e.  _V )  ->  { <. ( N  + 
1 ) ,  B >. } : { ( N  +  1 ) } -1-1-onto-> { B } )
4638, 2, 45syl2anc 642 . . . . . 6  |-  ( ph  ->  { <. ( N  + 
1 ) ,  B >. } : { ( N  +  1 ) } -1-1-onto-> { B } )
47 fzp1disj 10843 . . . . . . 7  |-  ( ( 1 ... N )  i^i  { ( N  +  1 ) } )  =  (/)
4847a1i 10 . . . . . 6  |-  ( ph  ->  ( ( 1 ... N )  i^i  {
( N  +  1 ) } )  =  (/) )
49 f1oun 5492 . . . . . 6  |-  ( ( ( G : ( 1 ... N ) -1-1-onto-> A  /\  { <. ( N  +  1 ) ,  B >. } : { ( N  + 
1 ) } -1-1-onto-> { B } )  /\  ( ( ( 1 ... N )  i^i  { ( N  +  1 ) } )  =  (/)  /\  ( A  i^i  { B }
)  =  (/) ) )  ->  ( G  u.  {
<. ( N  +  1 ) ,  B >. } ) : ( ( 1 ... N )  u.  { ( N  +  1 ) } ) -1-1-onto-> ( A  u.  { B } ) )
5044, 46, 48, 10, 49syl22anc 1183 . . . . 5  |-  ( ph  ->  ( G  u.  { <. ( N  +  1 ) ,  B >. } ) : ( ( 1 ... N )  u.  { ( N  +  1 ) } ) -1-1-onto-> ( A  u.  { B } ) )
51 eupap1.h . . . . . 6  |-  H  =  ( G  u.  { <. ( N  +  1 ) ,  B >. } )
52 f1oeq1 5463 . . . . . 6  |-  ( H  =  ( G  u.  {
<. ( N  +  1 ) ,  B >. } )  ->  ( H : ( ( 1 ... N )  u. 
{ ( N  + 
1 ) } ) -1-1-onto-> ( A  u.  { B } )  <->  ( G  u.  { <. ( N  + 
1 ) ,  B >. } ) : ( ( 1 ... N
)  u.  { ( N  +  1 ) } ) -1-1-onto-> ( A  u.  { B } ) ) )
5351, 52ax-mp 8 . . . . 5  |-  ( H : ( ( 1 ... N )  u. 
{ ( N  + 
1 ) } ) -1-1-onto-> ( A  u.  { B } )  <->  ( G  u.  { <. ( N  + 
1 ) ,  B >. } ) : ( ( 1 ... N
)  u.  { ( N  +  1 ) } ) -1-1-onto-> ( A  u.  { B } ) )
5450, 53sylibr 203 . . . 4  |-  ( ph  ->  H : ( ( 1 ... N )  u.  { ( N  +  1 ) } ) -1-1-onto-> ( A  u.  { B } ) )
55 1z 10053 . . . . . 6  |-  1  e.  ZZ
56 1m1e0 9814 . . . . . . . 8  |-  ( 1  -  1 )  =  0
5756fveq2i 5528 . . . . . . 7  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
5824, 57syl6eleqr 2374 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  ( 1  -  1 ) ) )
59 fzsuc2 10842 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  N  e.  ( ZZ>= `  ( 1  -  1 ) ) )  -> 
( 1 ... ( N  +  1 ) )  =  ( ( 1 ... N )  u.  { ( N  +  1 ) } ) )
6055, 58, 59sylancr 644 . . . . 5  |-  ( ph  ->  ( 1 ... ( N  +  1 ) )  =  ( ( 1 ... N )  u.  { ( N  +  1 ) } ) )
61 f1oeq2 5464 . . . . 5  |-  ( ( 1 ... ( N  +  1 ) )  =  ( ( 1 ... N )  u. 
{ ( N  + 
1 ) } )  ->  ( H :
( 1 ... ( N  +  1 ) ) -1-1-onto-> ( A  u.  { B } )  <->  H :
( ( 1 ... N )  u.  {
( N  +  1 ) } ) -1-1-onto-> ( A  u.  { B }
) ) )
6260, 61syl 15 . . . 4  |-  ( ph  ->  ( H : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( A  u.  { B } )  <->  H :
( ( 1 ... N )  u.  {
( N  +  1 ) } ) -1-1-onto-> ( A  u.  { B }
) ) )
6354, 62mpbird 223 . . 3  |-  ( ph  ->  H : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( A  u.  { B }
) )
6427feq2d 5380 . . . . . 6  |-  ( ph  ->  ( P : ( 0 ... N ) --> V  <->  P : ( 0 ... ( # `  G
) ) --> V ) )
6518, 64mpbird 223 . . . . 5  |-  ( ph  ->  P : ( 0 ... N ) --> V )
66 f1osng 5514 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  NN0  /\  C  e.  V )  ->  { <. ( N  + 
1 ) ,  C >. } : { ( N  +  1 ) } -1-1-onto-> { C } )
6738, 31, 66syl2anc 642 . . . . . . 7  |-  ( ph  ->  { <. ( N  + 
1 ) ,  C >. } : { ( N  +  1 ) } -1-1-onto-> { C } )
68 f1of 5472 . . . . . . 7  |-  ( {
<. ( N  +  1 ) ,  C >. } : { ( N  +  1 ) } -1-1-onto-> { C }  ->  { <. ( N  +  1 ) ,  C >. } : { ( N  + 
1 ) } --> { C } )
6967, 68syl 15 . . . . . 6  |-  ( ph  ->  { <. ( N  + 
1 ) ,  C >. } : { ( N  +  1 ) } --> { C }
)
7031snssd 3760 . . . . . 6  |-  ( ph  ->  { C }  C_  V )
71 fss 5397 . . . . . 6  |-  ( ( { <. ( N  + 
1 ) ,  C >. } : { ( N  +  1 ) } --> { C }  /\  { C }  C_  V )  ->  { <. ( N  +  1 ) ,  C >. } : { ( N  + 
1 ) } --> V )
7269, 70, 71syl2anc 642 . . . . 5  |-  ( ph  ->  { <. ( N  + 
1 ) ,  C >. } : { ( N  +  1 ) } --> V )
73 fzp1disj 10843 . . . . . 6  |-  ( ( 0 ... N )  i^i  { ( N  +  1 ) } )  =  (/)
7473a1i 10 . . . . 5  |-  ( ph  ->  ( ( 0 ... N )  i^i  {
( N  +  1 ) } )  =  (/) )
75 fun2 5406 . . . . 5  |-  ( ( ( P : ( 0 ... N ) --> V  /\  { <. ( N  +  1 ) ,  C >. } : { ( N  + 
1 ) } --> V )  /\  ( ( 0 ... N )  i^i 
{ ( N  + 
1 ) } )  =  (/) )  ->  ( P  u.  { <. ( N  +  1 ) ,  C >. } ) : ( ( 0 ... N )  u. 
{ ( N  + 
1 ) } ) --> V )
7665, 72, 74, 75syl21anc 1181 . . . 4  |-  ( ph  ->  ( P  u.  { <. ( N  +  1 ) ,  C >. } ) : ( ( 0 ... N )  u.  { ( N  +  1 ) } ) --> V )
77 eupap1.q . . . . . 6  |-  Q  =  ( P  u.  { <. ( N  +  1 ) ,  C >. } )
7877a1i 10 . . . . 5  |-  ( ph  ->  Q  =  ( P  u.  { <. ( N  +  1 ) ,  C >. } ) )
79 fzsuc 10835 . . . . . 6  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( 0 ... ( N  + 
1 ) )  =  ( ( 0 ... N )  u.  {
( N  +  1 ) } ) )
8024, 79syl 15 . . . . 5  |-  ( ph  ->  ( 0 ... ( N  +  1 ) )  =  ( ( 0 ... N )  u.  { ( N  +  1 ) } ) )
8178, 80feq12d 5381 . . . 4  |-  ( ph  ->  ( Q : ( 0 ... ( N  +  1 ) ) --> V  <->  ( P  u.  {
<. ( N  +  1 ) ,  C >. } ) : ( ( 0 ... N )  u.  { ( N  +  1 ) } ) --> V ) )
8276, 81mpbird 223 . . 3  |-  ( ph  ->  Q : ( 0 ... ( N  + 
1 ) ) --> V )
8335fveq1i 5526 . . . . . . . 8  |-  ( F `
 ( G `  k ) )  =  ( ( E  u.  {
<. B ,  { ( P `  N ) ,  C } >. } ) `  ( G `
 k ) )
84 f1of 5472 . . . . . . . . . . . . 13  |-  ( G : ( 1 ... N ) -1-1-onto-> A  ->  G :
( 1 ... N
) --> A )
8544, 84syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  G : ( 1 ... N ) --> A )
86 ffvelrn 5663 . . . . . . . . . . . 12  |-  ( ( G : ( 1 ... N ) --> A  /\  k  e.  ( 1 ... N ) )  ->  ( G `  k )  e.  A
)
8785, 86sylan 457 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( G `  k )  e.  A )
888adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  -.  B  e.  A )
89 nelne2 2536 . . . . . . . . . . 11  |-  ( ( ( G `  k
)  e.  A  /\  -.  B  e.  A
)  ->  ( G `  k )  =/=  B
)
9087, 88, 89syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( G `  k )  =/=  B )
9190necomd 2529 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  B  =/=  ( G `  k
) )
92 fvunsn 5712 . . . . . . . . 9  |-  ( B  =/=  ( G `  k )  ->  (
( E  u.  { <. B ,  { ( P `  N ) ,  C } >. } ) `  ( G `
 k ) )  =  ( E `  ( G `  k ) ) )
9391, 92syl 15 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  (
( E  u.  { <. B ,  { ( P `  N ) ,  C } >. } ) `  ( G `
 k ) )  =  ( E `  ( G `  k ) ) )
9483, 93syl5eq 2327 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( F `  ( G `  k ) )  =  ( E `  ( G `  k )
) )
9551fveq1i 5526 . . . . . . . . 9  |-  ( H `
 k )  =  ( ( G  u.  {
<. ( N  +  1 ) ,  B >. } ) `  k )
96 elfznn 10819 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN )
9796adantl 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  k  e.  NN )
9897nnred 9761 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  k  e.  RR )
9922nn0red 10019 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  RR )
10099adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  N  e.  RR )
10138nn0red 10019 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  +  1 )  e.  RR )
102101adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( N  +  1 )  e.  RR )
103 elfzle2 10800 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... N )  ->  k  <_  N )
104103adantl 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  k  <_  N )
10599ltp1d 9687 . . . . . . . . . . . . 13  |-  ( ph  ->  N  <  ( N  +  1 ) )
106105adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  N  <  ( N  +  1 ) )
10798, 100, 102, 104, 106lelttrd 8974 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  k  <  ( N  +  1 ) )
10898, 107gtned 8954 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( N  +  1 )  =/=  k )
109 fvunsn 5712 . . . . . . . . . 10  |-  ( ( N  +  1 )  =/=  k  ->  (
( G  u.  { <. ( N  +  1 ) ,  B >. } ) `  k )  =  ( G `  k ) )
110108, 109syl 15 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  (
( G  u.  { <. ( N  +  1 ) ,  B >. } ) `  k )  =  ( G `  k ) )
11195, 110syl5eq 2327 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( H `  k )  =  ( G `  k ) )
112111fveq2d 5529 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( F `  ( H `  k ) )  =  ( F `  ( G `  k )
) )
11377fveq1i 5526 . . . . . . . . . 10  |-  ( Q `
 ( k  - 
1 ) )  =  ( ( P  u.  {
<. ( N  +  1 ) ,  C >. } ) `  ( k  -  1 ) )
114 peano2rem 9113 . . . . . . . . . . . . 13  |-  ( k  e.  RR  ->  (
k  -  1 )  e.  RR )
11598, 114syl 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  (
k  -  1 )  e.  RR )
11698ltm1d 9689 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  (
k  -  1 )  <  k )
117115, 98, 102, 116, 107lttrd 8977 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  (
k  -  1 )  <  ( N  + 
1 ) )
118115, 117gtned 8954 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( N  +  1 )  =/=  ( k  - 
1 ) )
119 fvunsn 5712 . . . . . . . . . . 11  |-  ( ( N  +  1 )  =/=  ( k  - 
1 )  ->  (
( P  u.  { <. ( N  +  1 ) ,  C >. } ) `  ( k  -  1 ) )  =  ( P `  ( k  -  1 ) ) )
120118, 119syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  (
( P  u.  { <. ( N  +  1 ) ,  C >. } ) `  ( k  -  1 ) )  =  ( P `  ( k  -  1 ) ) )
121113, 120syl5eq 2327 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( Q `  ( k  -  1 ) )  =  ( P `  ( k  -  1 ) ) )
12277fveq1i 5526 . . . . . . . . . 10  |-  ( Q `
 k )  =  ( ( P  u.  {
<. ( N  +  1 ) ,  C >. } ) `  k )
123 fvunsn 5712 . . . . . . . . . . 11  |-  ( ( N  +  1 )  =/=  k  ->  (
( P  u.  { <. ( N  +  1 ) ,  C >. } ) `  k )  =  ( P `  k ) )
124108, 123syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  (
( P  u.  { <. ( N  +  1 ) ,  C >. } ) `  k )  =  ( P `  k ) )
125122, 124syl5eq 2327 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( Q `  k )  =  ( P `  k ) )
126121, 125preq12d 3714 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  { ( Q `  ( k  -  1 ) ) ,  ( Q `  k ) }  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } )
12711adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  G
( V EulPaths  E ) P )
12841eleq2d 2350 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  ( 1 ... N )  <-> 
k  e.  ( 1 ... ( # `  G
) ) ) )
129128biimpa 470 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  k  e.  ( 1 ... ( # `
 G ) ) )
130 eupaseg 23888 . . . . . . . . 9  |-  ( ( G ( V EulPaths  E ) P  /\  k  e.  ( 1 ... ( # `
 G ) ) )  ->  ( E `  ( G `  k
) )  =  {
( P `  (
k  -  1 ) ) ,  ( P `
 k ) } )
131127, 129, 130syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( E `  ( G `  k ) )  =  { ( P `  ( k  -  1 ) ) ,  ( P `  k ) } )
132126, 131eqtr4d 2318 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  { ( Q `  ( k  -  1 ) ) ,  ( Q `  k ) }  =  ( E `  ( G `
 k ) ) )
13394, 112, 1323eqtr4d 2325 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( F `  ( H `  k ) )  =  { ( Q `  ( k  -  1 ) ) ,  ( Q `  k ) } )
134133ralrimiva 2626 . . . . 5  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( F `  ( H `  k )
)  =  { ( Q `  ( k  -  1 ) ) ,  ( Q `  k ) } )
13535fveq1i 5526 . . . . . . . . . 10  |-  ( F `
 B )  =  ( ( E  u.  {
<. B ,  { ( P `  N ) ,  C } >. } ) `  B )
136 fnun 5350 . . . . . . . . . . . . 13  |-  ( ( ( E  Fn  A  /\  { <. B ,  {
( P `  N
) ,  C } >. }  Fn  { B } )  /\  ( A  i^i  { B }
)  =  (/) )  -> 
( E  u.  { <. B ,  { ( P `  N ) ,  C } >. } )  Fn  ( A  u.  { B }
) )
1371, 7, 10, 136syl21anc 1181 . . . . . . . . . . . 12  |-  ( ph  ->  ( E  u.  { <. B ,  { ( P `  N ) ,  C } >. } )  Fn  ( A  u.  { B }
) )
138 fnfun 5341 . . . . . . . . . . . 12  |-  ( ( E  u.  { <. B ,  { ( P `
 N ) ,  C } >. } )  Fn  ( A  u.  { B } )  ->  Fun  ( E  u.  { <. B ,  { ( P `  N ) ,  C } >. } ) )
139137, 138syl 15 . . . . . . . . . . 11  |-  ( ph  ->  Fun  ( E  u.  {
<. B ,  { ( P `  N ) ,  C } >. } ) )
140 ssun2 3339 . . . . . . . . . . . 12  |-  { <. B ,  { ( P `
 N ) ,  C } >. }  C_  ( E  u.  { <. B ,  { ( P `
 N ) ,  C } >. } )
141140a1i 10 . . . . . . . . . . 11  |-  ( ph  ->  { <. B ,  {
( P `  N
) ,  C } >. }  C_  ( E  u.  { <. B ,  {
( P `  N
) ,  C } >. } ) )
142 snidg 3665 . . . . . . . . . . . . 13  |-  ( B  e.  _V  ->  B  e.  { B } )
1432, 142syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  { B } )
1443dmsnop 5147 . . . . . . . . . . . 12  |-  dom  { <. B ,  { ( P `  N ) ,  C } >. }  =  { B }
145143, 144syl6eleqr 2374 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  dom  { <. B ,  { ( P `  N ) ,  C } >. } )
146 funssfv 5543 . . . . . . . . . . 11  |-  ( ( Fun  ( E  u.  {
<. B ,  { ( P `  N ) ,  C } >. } )  /\  { <. B ,  { ( P `
 N ) ,  C } >. }  C_  ( E  u.  { <. B ,  { ( P `
 N ) ,  C } >. } )  /\  B  e.  dom  {
<. B ,  { ( P `  N ) ,  C } >. } )  ->  ( ( E  u.  { <. B ,  { ( P `  N ) ,  C } >. } ) `  B )  =  ( { <. B ,  {
( P `  N
) ,  C } >. } `  B ) )
147139, 141, 145, 146syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  ( ( E  u.  {
<. B ,  { ( P `  N ) ,  C } >. } ) `  B )  =  ( { <. B ,  { ( P `
 N ) ,  C } >. } `  B ) )
148135, 147syl5eq 2327 . . . . . . . . 9  |-  ( ph  ->  ( F `  B
)  =  ( {
<. B ,  { ( P `  N ) ,  C } >. } `
 B ) )
149 fvsng 5714 . . . . . . . . . 10  |-  ( ( B  e.  _V  /\  { ( P `  N
) ,  C }  e.  _V )  ->  ( { <. B ,  {
( P `  N
) ,  C } >. } `  B )  =  { ( P `
 N ) ,  C } )
1502, 3, 149sylancl 643 . . . . . . . . 9  |-  ( ph  ->  ( { <. B ,  { ( P `  N ) ,  C } >. } `  B
)  =  { ( P `  N ) ,  C } )
151148, 150eqtrd 2315 . . . . . . . 8  |-  ( ph  ->  ( F `  B
)  =  { ( P `  N ) ,  C } )
15251fveq1i 5526 . . . . . . . . . . 11  |-  ( H `
 ( N  + 
1 ) )  =  ( ( G  u.  {
<. ( N  +  1 ) ,  B >. } ) `  ( N  +  1 ) )
153 f1ofun 5474 . . . . . . . . . . . . 13  |-  ( ( G  u.  { <. ( N  +  1 ) ,  B >. } ) : ( ( 1 ... N )  u. 
{ ( N  + 
1 ) } ) -1-1-onto-> ( A  u.  { B } )  ->  Fun  ( G  u.  { <. ( N  +  1 ) ,  B >. } ) )
15450, 153syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  Fun  ( G  u.  {
<. ( N  +  1 ) ,  B >. } ) )
155 ssun2 3339 . . . . . . . . . . . . 13  |-  { <. ( N  +  1 ) ,  B >. }  C_  ( G  u.  { <. ( N  +  1 ) ,  B >. } )
156155a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  { <. ( N  + 
1 ) ,  B >. }  C_  ( G  u.  { <. ( N  + 
1 ) ,  B >. } ) )
157 snidg 3665 . . . . . . . . . . . . . 14  |-  ( ( N  +  1 )  e.  NN0  ->  ( N  +  1 )  e. 
{ ( N  + 
1 ) } )
15838, 157syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  +  1 )  e.  { ( N  +  1 ) } )
159 dmsnopg 5144 . . . . . . . . . . . . . 14  |-  ( B  e.  _V  ->  dom  {
<. ( N  +  1 ) ,  B >. }  =  { ( N  +  1 ) } )
1602, 159syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  { <. ( N  +  1 ) ,  B >. }  =  { ( N  + 
1 ) } )
161158, 160eleqtrrd 2360 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  +  1 )  e.  dom  { <. ( N  +  1 ) ,  B >. } )
162 funssfv 5543 . . . . . . . . . . . 12  |-  ( ( Fun  ( G  u.  {
<. ( N  +  1 ) ,  B >. } )  /\  { <. ( N  +  1 ) ,  B >. }  C_  ( G  u.  { <. ( N  +  1 ) ,  B >. } )  /\  ( N  + 
1 )  e.  dom  {
<. ( N  +  1 ) ,  B >. } )  ->  ( ( G  u.  { <. ( N  +  1 ) ,  B >. } ) `
 ( N  + 
1 ) )  =  ( { <. ( N  +  1 ) ,  B >. } `  ( N  +  1
) ) )
163154, 156, 161, 162syl3anc 1182 . . . . . . . . . . 11  |-  ( ph  ->  ( ( G  u.  {
<. ( N  +  1 ) ,  B >. } ) `  ( N  +  1 ) )  =  ( { <. ( N  +  1 ) ,  B >. } `  ( N  +  1
) ) )
164152, 163syl5eq 2327 . . . . . . . . . 10  |-  ( ph  ->  ( H `  ( N  +  1 ) )  =  ( {
<. ( N  +  1 ) ,  B >. } `
 ( N  + 
1 ) ) )
165 fvsng 5714 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  e.  NN0  /\  B  e.  _V )  ->  ( { <. ( N  +  1 ) ,  B >. } `  ( N  +  1
) )  =  B )
16638, 2, 165syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( { <. ( N  +  1 ) ,  B >. } `  ( N  +  1
) )  =  B )
167164, 166eqtrd 2315 . . . . . . . . 9  |-  ( ph  ->  ( H `  ( N  +  1 ) )  =  B )
168167fveq2d 5529 . . . . . . . 8  |-  ( ph  ->  ( F `  ( H `  ( N  +  1 ) ) )  =  ( F `
 B ) )
16999recnd 8861 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  CC )
170 ax-1cn 8795 . . . . . . . . . . . 12  |-  1  e.  CC
171 pncan 9057 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
172169, 170, 171sylancl 643 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
173172fveq2d 5529 . . . . . . . . . 10  |-  ( ph  ->  ( Q `  (
( N  +  1 )  -  1 ) )  =  ( Q `
 N ) )
17477fveq1i 5526 . . . . . . . . . . 11  |-  ( Q `
 N )  =  ( ( P  u.  {
<. ( N  +  1 ) ,  C >. } ) `  N )
17599, 105gtned 8954 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  +  1 )  =/=  N )
176 fvunsn 5712 . . . . . . . . . . . 12  |-  ( ( N  +  1 )  =/=  N  ->  (
( P  u.  { <. ( N  +  1 ) ,  C >. } ) `  N )  =  ( P `  N ) )
177175, 176syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  u.  {
<. ( N  +  1 ) ,  C >. } ) `  N )  =  ( P `  N ) )
178174, 177syl5eq 2327 . . . . . . . . . 10  |-  ( ph  ->  ( Q `  N
)  =  ( P `
 N ) )
179173, 178eqtrd 2315 . . . . . . . . 9  |-  ( ph  ->  ( Q `  (
( N  +  1 )  -  1 ) )  =  ( P `
 N ) )
18077fveq1i 5526 . . . . . . . . . . 11  |-  ( Q `
 ( N  + 
1 ) )  =  ( ( P  u.  {
<. ( N  +  1 ) ,  C >. } ) `  ( N  +  1 ) )
181 ffun 5391 . . . . . . . . . . . . 13  |-  ( ( P  u.  { <. ( N  +  1 ) ,  C >. } ) : ( ( 0 ... N )  u. 
{ ( N  + 
1 ) } ) --> V  ->  Fun  ( P  u.  { <. ( N  +  1 ) ,  C >. } ) )
18276, 181syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  Fun  ( P  u.  {
<. ( N  +  1 ) ,  C >. } ) )
183 ssun2 3339 . . . . . . . . . . . . 13  |-  { <. ( N  +  1 ) ,  C >. }  C_  ( P  u.  { <. ( N  +  1 ) ,  C >. } )
184183a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  { <. ( N  + 
1 ) ,  C >. }  C_  ( P  u.  { <. ( N  + 
1 ) ,  C >. } ) )
185 dmsnopg 5144 . . . . . . . . . . . . . 14  |-  ( C  e.  V  ->  dom  {
<. ( N  +  1 ) ,  C >. }  =  { ( N  +  1 ) } )
18631, 185syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  { <. ( N  +  1 ) ,  C >. }  =  { ( N  + 
1 ) } )
187158, 186eleqtrrd 2360 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  +  1 )  e.  dom  { <. ( N  +  1 ) ,  C >. } )
188 funssfv 5543 . . . . . . . . . . . 12  |-  ( ( Fun  ( P  u.  {
<. ( N  +  1 ) ,  C >. } )  /\  { <. ( N  +  1 ) ,  C >. }  C_  ( P  u.  { <. ( N  +  1 ) ,  C >. } )  /\  ( N  + 
1 )  e.  dom  {
<. ( N  +  1 ) ,  C >. } )  ->  ( ( P  u.  { <. ( N  +  1 ) ,  C >. } ) `
 ( N  + 
1 ) )  =  ( { <. ( N  +  1 ) ,  C >. } `  ( N  +  1
) ) )
189182, 184, 187, 188syl3anc 1182 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  u.  {
<. ( N  +  1 ) ,  C >. } ) `  ( N  +  1 ) )  =  ( { <. ( N  +  1 ) ,  C >. } `  ( N  +  1
) ) )
190180, 189syl5eq 2327 . . . . . . . . . 10  |-  ( ph  ->  ( Q `  ( N  +  1 ) )  =  ( {
<. ( N  +  1 ) ,  C >. } `
 ( N  + 
1 ) ) )
191 fvsng 5714 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  e.  NN0  /\  C  e.  V )  ->  ( { <. ( N  +  1 ) ,  C >. } `  ( N  +  1
) )  =  C )
19238, 31, 191syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( { <. ( N  +  1 ) ,  C >. } `  ( N  +  1
) )  =  C )
193190, 192eqtrd 2315 . . . . . . . . 9  |-  ( ph  ->  ( Q `  ( N  +  1 ) )  =  C )
194179, 193preq12d 3714 . . . . . . . 8  |-  ( ph  ->  { ( Q `  ( ( N  + 
1 )  -  1 ) ) ,  ( Q `  ( N  +  1 ) ) }  =  { ( P `  N ) ,  C } )
195151, 168, 1943eqtr4d 2325 . . . . . . 7  |-  ( ph  ->  ( F `  ( H `  ( N  +  1 ) ) )  =  { ( Q `  ( ( N  +  1 )  -  1 ) ) ,  ( Q `  ( N  +  1
) ) } )
196 elsni 3664 . . . . . . . . . 10  |-  ( k  e.  { ( N  +  1 ) }  ->  k  =  ( N  +  1 ) )
197196fveq2d 5529 . . . . . . . . 9  |-  ( k  e.  { ( N  +  1 ) }  ->  ( H `  k )  =  ( H `  ( N  +  1 ) ) )
198197fveq2d 5529 . . . . . . . 8  |-  ( k  e.  { ( N  +  1 ) }  ->  ( F `  ( H `  k ) )  =  ( F `
 ( H `  ( N  +  1
) ) ) )
199196oveq1d 5873 . . . . . . . . . 10  |-  ( k  e.  { ( N  +  1 ) }  ->  ( k  - 
1 )  =  ( ( N  +  1 )  -  1 ) )
200199fveq2d 5529 . . . . . . . . 9  |-  ( k  e.  { ( N  +  1 ) }  ->  ( Q `  ( k  -  1 ) )  =  ( Q `  ( ( N  +  1 )  -  1 ) ) )
201196fveq2d 5529 . . . . . . . . 9  |-  ( k  e.  { ( N  +  1 ) }  ->  ( Q `  k )  =  ( Q `  ( N  +  1 ) ) )
202200, 201preq12d 3714 . . . . . . . 8  |-  ( k  e.  { ( N  +  1 ) }  ->  { ( Q `
 ( k  - 
1 ) ) ,  ( Q `  k
) }  =  {
( Q `  (
( N  +  1 )  -  1 ) ) ,  ( Q `
 ( N  + 
1 ) ) } )
203198, 202eqeq12d 2297 . . . . . . 7  |-  ( k  e.  { ( N  +  1 ) }  ->  ( ( F `
 ( H `  k ) )  =  { ( Q `  ( k  -  1 ) ) ,  ( Q `  k ) }  <->  ( F `  ( H `  ( N  +  1 ) ) )  =  { ( Q `  ( ( N  +  1 )  -  1 ) ) ,  ( Q `  ( N  +  1
) ) } ) )
204195, 203syl5ibrcom 213 . . . . . 6  |-  ( ph  ->  ( k  e.  {
( N  +  1 ) }  ->  ( F `  ( H `  k ) )  =  { ( Q `  ( k  -  1 ) ) ,  ( Q `  k ) } ) )
205204ralrimiv 2625 . . . . 5  |-  ( ph  ->  A. k  e.  {
( N  +  1 ) }  ( F `
 ( H `  k ) )  =  { ( Q `  ( k  -  1 ) ) ,  ( Q `  k ) } )
206 ralun 3357 . . . . 5  |-  ( ( A. k  e.  ( 1 ... N ) ( F `  ( H `  k )
)  =  { ( Q `  ( k  -  1 ) ) ,  ( Q `  k ) }  /\  A. k  e.  { ( N  +  1 ) }  ( F `  ( H `  k ) )  =  { ( Q `  ( k  -  1 ) ) ,  ( Q `  k ) } )  ->  A. k  e.  ( ( 1 ... N
)  u.  { ( N  +  1 ) } ) ( F `
 ( H `  k ) )  =  { ( Q `  ( k  -  1 ) ) ,  ( Q `  k ) } )
207134, 205, 206syl2anc 642 . . . 4  |-  ( ph  ->  A. k  e.  ( ( 1 ... N
)  u.  { ( N  +  1 ) } ) ( F `
 ( H `  k ) )  =  { ( Q `  ( k  -  1 ) ) ,  ( Q `  k ) } )
20860raleqdv 2742 . . . 4  |-  ( ph  ->  ( A. k  e.  ( 1 ... ( N  +  1 ) ) ( F `  ( H `  k ) )  =  { ( Q `  ( k  -  1 ) ) ,  ( Q `  k ) }  <->  A. k  e.  ( ( 1 ... N )  u.  {
( N  +  1 ) } ) ( F `  ( H `
 k ) )  =  { ( Q `
 ( k  - 
1 ) ) ,  ( Q `  k
) } ) )
209207, 208mpbird 223 . . 3  |-  ( ph  ->  A. k  e.  ( 1 ... ( N  +  1 ) ) ( F `  ( H `  k )
)  =  { ( Q `  ( k  -  1 ) ) ,  ( Q `  k ) } )
210 oveq2 5866 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  (
1 ... n )  =  ( 1 ... ( N  +  1 ) ) )
211 f1oeq2 5464 . . . . . 6  |-  ( ( 1 ... n )  =  ( 1 ... ( N  +  1 ) )  ->  ( H : ( 1 ... n ) -1-1-onto-> ( A  u.  { B } )  <->  H :
( 1 ... ( N  +  1 ) ) -1-1-onto-> ( A  u.  { B } ) ) )
212210, 211syl 15 . . . . 5  |-  ( n  =  ( N  + 
1 )  ->  ( H : ( 1 ... n ) -1-1-onto-> ( A  u.  { B } )  <->  H :
( 1 ... ( N  +  1 ) ) -1-1-onto-> ( A  u.  { B } ) ) )
213 oveq2 5866 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  (
0 ... n )  =  ( 0 ... ( N  +  1 ) ) )
214213feq2d 5380 . . . . 5  |-  ( n  =  ( N  + 
1 )  ->  ( Q : ( 0 ... n ) --> V  <->  Q :
( 0 ... ( N  +  1 ) ) --> V ) )
215210raleqdv 2742 . . . . 5  |-  ( n  =  ( N  + 
1 )  ->  ( A. k  e.  (
1 ... n ) ( F `  ( H `
 k ) )  =  { ( Q `
 ( k  - 
1 ) ) ,  ( Q `  k
) }  <->  A. k  e.  ( 1 ... ( N  +  1 ) ) ( F `  ( H `  k ) )  =  { ( Q `  ( k  -  1 ) ) ,  ( Q `  k ) } ) )
216212, 214, 2153anbi123d 1252 . . . 4  |-  ( n  =  ( N  + 
1 )  ->  (
( H : ( 1 ... n ) -1-1-onto-> ( A  u.  { B } )  /\  Q : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n ) ( F `  ( H `
 k ) )  =  { ( Q `
 ( k  - 
1 ) ) ,  ( Q `  k
) } )  <->  ( H : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( A  u.  { B } )  /\  Q : ( 0 ... ( N  +  1 ) ) --> V  /\  A. k  e.  ( 1 ... ( N  + 
1 ) ) ( F `  ( H `
 k ) )  =  { ( Q `
 ( k  - 
1 ) ) ,  ( Q `  k
) } ) ) )
217216rspcev 2884 . . 3  |-  ( ( ( N  +  1 )  e.  NN0  /\  ( H : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( A  u.  { B }
)  /\  Q :
( 0 ... ( N  +  1 ) ) --> V  /\  A. k  e.  ( 1 ... ( N  + 
1 ) ) ( F `  ( H `
 k ) )  =  { ( Q `
 ( k  - 
1 ) ) ,  ( Q `  k
) } ) )  ->  E. n  e.  NN0  ( H : ( 1 ... n ) -1-1-onto-> ( A  u.  { B }
)  /\  Q :
( 0 ... n
) --> V  /\  A. k  e.  ( 1 ... n ) ( F `  ( H `
 k ) )  =  { ( Q `
 ( k  - 
1 ) ) ,  ( Q `  k
) } ) )
21838, 63, 82, 209, 217syl13anc 1184 . 2  |-  ( ph  ->  E. n  e.  NN0  ( H : ( 1 ... n ) -1-1-onto-> ( A  u.  { B }
)  /\  Q :
( 0 ... n
) --> V  /\  A. k  e.  ( 1 ... n ) ( F `  ( H `
 k ) )  =  { ( Q `
 ( k  - 
1 ) ) ,  ( Q `  k
) } ) )
21935fneq1i 5338 . . . . 5  |-  ( F  Fn  ( A  u.  { B } )  <->  ( E  u.  { <. B ,  {
( P `  N
) ,  C } >. } )  Fn  ( A  u.  { B } ) )
220137, 219sylibr 203 . . . 4  |-  ( ph  ->  F  Fn  ( A  u.  { B }
) )
221 fndm 5343 . . . 4  |-  ( F  Fn  ( A  u.  { B } )  ->  dom  F  =  ( A  u.  { B }
) )
222220, 221syl 15 . . 3  |-  ( ph  ->  dom  F  =  ( A  u.  { B } ) )
223 iseupa 23881 . . 3  |-  ( dom 
F  =  ( A  u.  { B }
)  ->  ( H
( V EulPaths  F ) Q 
<->  ( V UMGrph  F  /\  E. n  e.  NN0  ( H : ( 1 ... n ) -1-1-onto-> ( A  u.  { B } )  /\  Q : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n ) ( F `  ( H `
 k ) )  =  { ( Q `
 ( k  - 
1 ) ) ,  ( Q `  k
) } ) ) ) )
224222, 223syl 15 . 2  |-  ( ph  ->  ( H ( V EulPaths  F ) Q  <->  ( V UMGrph  F  /\  E. n  e. 
NN0  ( H :
( 1 ... n
)
-1-1-onto-> ( A  u.  { B } )  /\  Q : ( 0 ... n ) --> V  /\  A. k  e.  ( 1 ... n ) ( F `  ( H `
 k ) )  =  { ( Q `
 ( k  - 
1 ) ) ,  ( Q `  k
) } ) ) ) )
22536, 218, 224mpbir2and 888 1  |-  ( ph  ->  H ( V EulPaths  F ) Q )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   {cpr 3641   <.cop 3643   class class class wbr 4023   dom cdm 4689   Fun wfun 5249    Fn wfn 5250   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   Fincfn 6863   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868    - cmin 9037   NNcn 9746   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782   #chash 11337   UMGrph cumg 23860   EulPaths ceup 23861
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-hash 11338  df-umgra 23863  df-eupa 23864
  Copyright terms: Public domain W3C validator