MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupath Unicode version

Theorem eupath 21660
Description: A graph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
eupath  |-  ( ( V EulPaths  E )  =/=  (/)  ->  ( # `
 { x  e.  V  |  -.  2  ||  ( ( V VDeg  E
) `  x ) } )  e.  {
0 ,  2 } )
Distinct variable groups:    x, E    x, V

Proof of Theorem eupath
Dummy variables  f  p  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 releupa 21643 . . . . 5  |-  Rel  ( V EulPaths  E )
2 reldm0 5050 . . . . 5  |-  ( Rel  ( V EulPaths  E )  ->  ( ( V EulPaths  E )  =  (/)  <->  dom  ( V EulPaths  E )  =  (/) ) )
31, 2ax-mp 8 . . . 4  |-  ( ( V EulPaths  E )  =  (/)  <->  dom  ( V EulPaths  E )  =  (/) )
43necon3bii 2603 . . 3  |-  ( ( V EulPaths  E )  =/=  (/)  <->  dom  ( V EulPaths  E )  =/=  (/) )
5 n0 3601 . . 3  |-  ( dom  ( V EulPaths  E )  =/=  (/)  <->  E. f  f  e. 
dom  ( V EulPaths  E ) )
64, 5bitri 241 . 2  |-  ( ( V EulPaths  E )  =/=  (/)  <->  E. f 
f  e.  dom  ( V EulPaths  E ) )
7 vex 2923 . . . . 5  |-  f  e. 
_V
87eldm 5030 . . . 4  |-  ( f  e.  dom  ( V EulPaths  E )  <->  E. p  f ( V EulPaths  E ) p )
9 eupagra 21645 . . . . . . . . 9  |-  ( f ( V EulPaths  E )
p  ->  V UMGrph  E )
10 umgraf2 21309 . . . . . . . . 9  |-  ( V UMGrph  E  ->  E : dom  E --> { y  e.  ( ~P V  \  { (/)
} )  |  (
# `  y )  <_  2 } )
11 ffn 5554 . . . . . . . . 9  |-  ( E : dom  E --> { y  e.  ( ~P V  \  { (/) } )  |  ( # `  y
)  <_  2 }  ->  E  Fn  dom  E
)
129, 10, 113syl 19 . . . . . . . 8  |-  ( f ( V EulPaths  E )
p  ->  E  Fn  dom  E )
13 id 20 . . . . . . . 8  |-  ( f ( V EulPaths  E )
p  ->  f ( V EulPaths  E ) p )
1412, 13eupath2 21659 . . . . . . 7  |-  ( f ( V EulPaths  E )
p  ->  { x  e.  V  |  -.  2  ||  ( ( V VDeg 
E ) `  x
) }  =  if ( ( p ` 
0 )  =  ( p `  ( # `  f ) ) ,  (/) ,  { ( p `
 0 ) ,  ( p `  ( # `
 f ) ) } ) )
1514fveq2d 5695 . . . . . 6  |-  ( f ( V EulPaths  E )
p  ->  ( # `  {
x  e.  V  |  -.  2  ||  ( ( V VDeg  E ) `  x ) } )  =  ( # `  if ( ( p ` 
0 )  =  ( p `  ( # `  f ) ) ,  (/) ,  { ( p `
 0 ) ,  ( p `  ( # `
 f ) ) } ) ) )
16 fveq2 5691 . . . . . . . 8  |-  ( (/)  =  if ( ( p `
 0 )  =  ( p `  ( # `
 f ) ) ,  (/) ,  { ( p `  0 ) ,  ( p `  ( # `  f ) ) } )  -> 
( # `  (/) )  =  ( # `  if ( ( p ` 
0 )  =  ( p `  ( # `  f ) ) ,  (/) ,  { ( p `
 0 ) ,  ( p `  ( # `
 f ) ) } ) ) )
1716eleq1d 2474 . . . . . . 7  |-  ( (/)  =  if ( ( p `
 0 )  =  ( p `  ( # `
 f ) ) ,  (/) ,  { ( p `  0 ) ,  ( p `  ( # `  f ) ) } )  -> 
( ( # `  (/) )  e. 
{ 0 ,  2 }  <->  ( # `  if ( ( p ` 
0 )  =  ( p `  ( # `  f ) ) ,  (/) ,  { ( p `
 0 ) ,  ( p `  ( # `
 f ) ) } ) )  e. 
{ 0 ,  2 } ) )
18 fveq2 5691 . . . . . . . 8  |-  ( { ( p `  0
) ,  ( p `
 ( # `  f
) ) }  =  if ( ( p ` 
0 )  =  ( p `  ( # `  f ) ) ,  (/) ,  { ( p `
 0 ) ,  ( p `  ( # `
 f ) ) } )  ->  ( # `
 { ( p `
 0 ) ,  ( p `  ( # `
 f ) ) } )  =  (
# `  if (
( p `  0
)  =  ( p `
 ( # `  f
) ) ,  (/) ,  { ( p ` 
0 ) ,  ( p `  ( # `  f ) ) } ) ) )
1918eleq1d 2474 . . . . . . 7  |-  ( { ( p `  0
) ,  ( p `
 ( # `  f
) ) }  =  if ( ( p ` 
0 )  =  ( p `  ( # `  f ) ) ,  (/) ,  { ( p `
 0 ) ,  ( p `  ( # `
 f ) ) } )  ->  (
( # `  { ( p `  0 ) ,  ( p `  ( # `  f ) ) } )  e. 
{ 0 ,  2 }  <->  ( # `  if ( ( p ` 
0 )  =  ( p `  ( # `  f ) ) ,  (/) ,  { ( p `
 0 ) ,  ( p `  ( # `
 f ) ) } ) )  e. 
{ 0 ,  2 } ) )
20 hash0 11605 . . . . . . . . 9  |-  ( # `  (/) )  =  0
21 c0ex 9045 . . . . . . . . . 10  |-  0  e.  _V
2221prid1 3876 . . . . . . . . 9  |-  0  e.  { 0 ,  2 }
2320, 22eqeltri 2478 . . . . . . . 8  |-  ( # `  (/) )  e.  {
0 ,  2 }
2423a1i 11 . . . . . . 7  |-  ( ( f ( V EulPaths  E ) p  /\  ( p `
 0 )  =  ( p `  ( # `
 f ) ) )  ->  ( # `  (/) )  e. 
{ 0 ,  2 } )
25 simpr 448 . . . . . . . . . 10  |-  ( ( f ( V EulPaths  E ) p  /\  -.  (
p `  0 )  =  ( p `  ( # `  f ) ) )  ->  -.  ( p `  0
)  =  ( p `
 ( # `  f
) ) )
2625neneqad 2641 . . . . . . . . 9  |-  ( ( f ( V EulPaths  E ) p  /\  -.  (
p `  0 )  =  ( p `  ( # `  f ) ) )  ->  (
p `  0 )  =/=  ( p `  ( # `
 f ) ) )
27 fvex 5705 . . . . . . . . . 10  |-  ( p `
 0 )  e. 
_V
28 fvex 5705 . . . . . . . . . 10  |-  ( p `
 ( # `  f
) )  e.  _V
29 hashprg 11625 . . . . . . . . . 10  |-  ( ( ( p `  0
)  e.  _V  /\  ( p `  ( # `
 f ) )  e.  _V )  -> 
( ( p ` 
0 )  =/=  (
p `  ( # `  f
) )  <->  ( # `  {
( p `  0
) ,  ( p `
 ( # `  f
) ) } )  =  2 ) )
3027, 28, 29mp2an 654 . . . . . . . . 9  |-  ( ( p `  0 )  =/=  ( p `  ( # `  f ) )  <->  ( # `  {
( p `  0
) ,  ( p `
 ( # `  f
) ) } )  =  2 )
3126, 30sylib 189 . . . . . . . 8  |-  ( ( f ( V EulPaths  E ) p  /\  -.  (
p `  0 )  =  ( p `  ( # `  f ) ) )  ->  ( # `
 { ( p `
 0 ) ,  ( p `  ( # `
 f ) ) } )  =  2 )
32 2cn 10030 . . . . . . . . . 10  |-  2  e.  CC
3332elexi 2929 . . . . . . . . 9  |-  2  e.  _V
3433prid2 3877 . . . . . . . 8  |-  2  e.  { 0 ,  2 }
3531, 34syl6eqel 2496 . . . . . . 7  |-  ( ( f ( V EulPaths  E ) p  /\  -.  (
p `  0 )  =  ( p `  ( # `  f ) ) )  ->  ( # `
 { ( p `
 0 ) ,  ( p `  ( # `
 f ) ) } )  e.  {
0 ,  2 } )
3617, 19, 24, 35ifbothda 3733 . . . . . 6  |-  ( f ( V EulPaths  E )
p  ->  ( # `  if ( ( p ` 
0 )  =  ( p `  ( # `  f ) ) ,  (/) ,  { ( p `
 0 ) ,  ( p `  ( # `
 f ) ) } ) )  e. 
{ 0 ,  2 } )
3715, 36eqeltrd 2482 . . . . 5  |-  ( f ( V EulPaths  E )
p  ->  ( # `  {
x  e.  V  |  -.  2  ||  ( ( V VDeg  E ) `  x ) } )  e.  { 0 ,  2 } )
3837exlimiv 1641 . . . 4  |-  ( E. p  f ( V EulPaths  E ) p  -> 
( # `  { x  e.  V  |  -.  2  ||  ( ( V VDeg 
E ) `  x
) } )  e. 
{ 0 ,  2 } )
398, 38sylbi 188 . . 3  |-  ( f  e.  dom  ( V EulPaths  E )  ->  ( # `
 { x  e.  V  |  -.  2  ||  ( ( V VDeg  E
) `  x ) } )  e.  {
0 ,  2 } )
4039exlimiv 1641 . 2  |-  ( E. f  f  e.  dom  ( V EulPaths  E )  -> 
( # `  { x  e.  V  |  -.  2  ||  ( ( V VDeg 
E ) `  x
) } )  e. 
{ 0 ,  2 } )
416, 40sylbi 188 1  |-  ( ( V EulPaths  E )  =/=  (/)  ->  ( # `
 { x  e.  V  |  -.  2  ||  ( ( V VDeg  E
) `  x ) } )  e.  {
0 ,  2 } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2571   {crab 2674   _Vcvv 2920    \ cdif 3281   (/)c0 3592   ifcif 3703   ~Pcpw 3763   {csn 3778   {cpr 3779   class class class wbr 4176   dom cdm 4841   Rel wrel 4846    Fn wfn 5412   -->wf 5413   ` cfv 5417  (class class class)co 6044   CCcc 8948   0cc0 8950    <_ cle 9081   2c2 10009   #chash 11577    || cdivides 12811   UMGrph cumg 21304   VDeg cvdg 21621   EulPaths ceup 21641
This theorem is referenced by:  konigsberg  21666
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-2o 6688  df-oadd 6691  df-er 6868  df-pm 6984  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-sup 7408  df-card 7786  df-cda 8008  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-n0 10182  df-z 10243  df-uz 10449  df-rp 10573  df-xadd 10671  df-fz 11004  df-seq 11283  df-exp 11342  df-hash 11578  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-dvds 12812  df-prm 13039  df-umgra 21305  df-vdgr 21622  df-eupa 21642
  Copyright terms: Public domain W3C validator