Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv2i Structured version   Unicode version

Theorem eusv2i 4713
 Description: Two ways to express single-valuedness of a class expression . (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusv2i
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem eusv2i
StepHypRef Expression
1 nfeu1 2291 . . 3
2 nfcvd 2573 . . . . . 6
3 eusvnf 4711 . . . . . 6
42, 3nfeqd 2586 . . . . 5
5 nf2 1889 . . . . 5
64, 5sylib 189 . . . 4
7 19.2 1671 . . . 4
86, 7impbid1 195 . . 3
91, 8eubid 2288 . 2
109ibir 234 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1549  wex 1550  wnf 1553   wceq 1652  weu 2281 This theorem is referenced by:  eusv2nf  4714 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2951  df-sbc 3155  df-csb 3245
 Copyright terms: Public domain W3C validator