Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv2nf Structured version   Unicode version

Theorem eusv2nf 4721
 Description: Two ways to express single-valuedness of a class expression . (Contributed by Mario Carneiro, 18-Nov-2016.)
Hypothesis
Ref Expression
eusv2.1
Assertion
Ref Expression
eusv2nf
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem eusv2nf
StepHypRef Expression
1 nfeu1 2291 . . . 4
2 nfe1 1747 . . . . . . 7
32nfeu 2297 . . . . . 6
4 eusv2.1 . . . . . . . . 9
54isseti 2962 . . . . . . . 8
6 19.8a 1762 . . . . . . . . 9
76ancri 536 . . . . . . . 8
85, 7eximii 1587 . . . . . . 7
9 eupick 2344 . . . . . . 7
108, 9mpan2 653 . . . . . 6
113, 10alrimi 1781 . . . . 5
12 nf3 1890 . . . . 5
1311, 12sylibr 204 . . . 4
141, 13alrimi 1781 . . 3
15 dfnfc2 4033 . . . 4
1615, 4mpg 1557 . . 3
1714, 16sylibr 204 . 2
18 eusvnfb 4719 . . . 4
194, 18mpbiran2 886 . . 3
20 eusv2i 4720 . . 3
2119, 20sylbir 205 . 2
2217, 21impbii 181 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wal 1549  wex 1550  wnf 1553   wceq 1652   wcel 1725  weu 2281  wnfc 2559  cvv 2956 This theorem is referenced by:  eusv2  4722 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-v 2958  df-sbc 3162  df-csb 3252  df-un 3325  df-sn 3820  df-pr 3821  df-uni 4016
 Copyright terms: Public domain W3C validator