MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusvobj1 Unicode version

Theorem eusvobj1 6338
Description: Specify the same object in two ways when class  B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Hypothesis
Ref Expression
eusvobj1.1  |-  B  e. 
_V
Assertion
Ref Expression
eusvobj1  |-  ( E! x E. y  e.  A  x  =  B  ->  ( iota x E. y  e.  A  x  =  B )  =  ( iota x A. y  e.  A  x  =  B )
)
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem eusvobj1
StepHypRef Expression
1 nfeu1 2153 . . 3  |-  F/ x E! x E. y  e.  A  x  =  B
2 eusvobj1.1 . . . 4  |-  B  e. 
_V
32eusvobj2 6337 . . 3  |-  ( E! x E. y  e.  A  x  =  B  ->  ( E. y  e.  A  x  =  B 
<-> 
A. y  e.  A  x  =  B )
)
41, 3alrimi 1745 . 2  |-  ( E! x E. y  e.  A  x  =  B  ->  A. x ( E. y  e.  A  x  =  B  <->  A. y  e.  A  x  =  B ) )
5 iotabi 5228 . 2  |-  ( A. x ( E. y  e.  A  x  =  B 
<-> 
A. y  e.  A  x  =  B )  ->  ( iota x E. y  e.  A  x  =  B )  =  ( iota x A. y  e.  A  x  =  B ) )
64, 5syl 15 1  |-  ( E! x E. y  e.  A  x  =  B  ->  ( iota x E. y  e.  A  x  =  B )  =  ( iota x A. y  e.  A  x  =  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527    = wceq 1623    e. wcel 1684   E!weu 2143   A.wral 2543   E.wrex 2544   _Vcvv 2788   iotacio 5217
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-nul 3456  df-sn 3646  df-uni 3828  df-iota 5219
  Copyright terms: Public domain W3C validator