MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval Structured version   Unicode version

Theorem evl1fval 19939
Description: Value of the simple/same ring evalutation map. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1fval.o  |-  O  =  (eval1 `  R )
evl1fval.q  |-  Q  =  ( 1o eval  R )
evl1fval.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
evl1fval  |-  O  =  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  Q )
Distinct variable groups:    x, y, B    x, Q    x, R
Allowed substitution hints:    Q( y)    R( y)    O( x, y)

Proof of Theorem evl1fval
Dummy variables  i 
r  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1fval.o . . 3  |-  O  =  (eval1 `  R )
2 fvex 5734 . . . . . 6  |-  ( Base `  r )  e.  _V
32a1i 11 . . . . 5  |-  ( r  =  R  ->  ( Base `  r )  e. 
_V )
4 id 20 . . . . . . . . 9  |-  ( b  =  ( Base `  r
)  ->  b  =  ( Base `  r )
)
5 fveq2 5720 . . . . . . . . . 10  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
6 evl1fval.b . . . . . . . . . 10  |-  B  =  ( Base `  R
)
75, 6syl6eqr 2485 . . . . . . . . 9  |-  ( r  =  R  ->  ( Base `  r )  =  B )
84, 7sylan9eqr 2489 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  ( Base `  r ) )  -> 
b  =  B )
98oveq1d 6088 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  ( Base `  r ) )  -> 
( b  ^m  1o )  =  ( B  ^m  1o ) )
108, 9oveq12d 6091 . . . . . . 7  |-  ( ( r  =  R  /\  b  =  ( Base `  r ) )  -> 
( b  ^m  (
b  ^m  1o )
)  =  ( B  ^m  ( B  ^m  1o ) ) )
118mpteq1d 4282 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  ( Base `  r ) )  -> 
( y  e.  b 
|->  ( 1o  X.  {
y } ) )  =  ( y  e.  B  |->  ( 1o  X.  { y } ) ) )
1211coeq2d 5027 . . . . . . 7  |-  ( ( r  =  R  /\  b  =  ( Base `  r ) )  -> 
( x  o.  (
y  e.  b  |->  ( 1o  X.  { y } ) ) )  =  ( x  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) ) )
1310, 12mpteq12dv 4279 . . . . . 6  |-  ( ( r  =  R  /\  b  =  ( Base `  r ) )  -> 
( x  e.  ( b  ^m  ( b  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  b  |->  ( 1o  X.  { y } ) ) ) )  =  ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) ) ) )
14 simpl 444 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  ( Base `  r ) )  -> 
r  =  R )
1514oveq2d 6089 . . . . . . 7  |-  ( ( r  =  R  /\  b  =  ( Base `  r ) )  -> 
( 1o eval  r )  =  ( 1o eval  R
) )
16 evl1fval.q . . . . . . 7  |-  Q  =  ( 1o eval  R )
1715, 16syl6eqr 2485 . . . . . 6  |-  ( ( r  =  R  /\  b  =  ( Base `  r ) )  -> 
( 1o eval  r )  =  Q )
1813, 17coeq12d 5029 . . . . 5  |-  ( ( r  =  R  /\  b  =  ( Base `  r ) )  -> 
( ( x  e.  ( b  ^m  (
b  ^m  1o )
)  |->  ( x  o.  ( y  e.  b 
|->  ( 1o  X.  {
y } ) ) ) )  o.  ( 1o eval  r ) )  =  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  Q ) )
193, 18csbied 3285 . . . 4  |-  ( r  =  R  ->  [_ ( Base `  r )  / 
b ]_ ( ( x  e.  ( b  ^m  ( b  ^m  1o ) )  |->  ( x  o.  ( y  e.  b  |->  ( 1o  X.  { y } ) ) ) )  o.  ( 1o eval  r ) )  =  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  Q ) )
20 df-evl1 16572 . . . 4  |- eval1  =  (
r  e.  _V  |->  [_ ( Base `  r )  /  b ]_ (
( x  e.  ( b  ^m  ( b  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  b  |->  ( 1o  X.  { y } ) ) ) )  o.  ( 1o eval 
r ) ) )
21 ovex 6098 . . . . . 6  |-  ( B  ^m  ( B  ^m  1o ) )  e.  _V
2221mptex 5958 . . . . 5  |-  ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) ) )  e.  _V
23 ovex 6098 . . . . . 6  |-  ( 1o eval  R )  e.  _V
2416, 23eqeltri 2505 . . . . 5  |-  Q  e. 
_V
2522, 24coex 5405 . . . 4  |-  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  Q )  e.  _V
2619, 20, 25fvmpt 5798 . . 3  |-  ( R  e.  _V  ->  (eval1 `  R )  =  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  Q ) )
271, 26syl5eq 2479 . 2  |-  ( R  e.  _V  ->  O  =  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) ) )  o.  Q
) )
28 fvprc 5714 . . . . 5  |-  ( -.  R  e.  _V  ->  (eval1 `  R )  =  (/) )
291, 28syl5eq 2479 . . . 4  |-  ( -.  R  e.  _V  ->  O  =  (/) )
30 co02 5375 . . . 4  |-  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  (/) )  =  (/)
3129, 30syl6eqr 2485 . . 3  |-  ( -.  R  e.  _V  ->  O  =  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) ) )  o.  (/) ) )
32 df-evl 16413 . . . . . . 7  |- eval  =  ( i  e.  _V , 
r  e.  _V  |->  ( ( i evalSub  r ) `
 ( Base `  r
) ) )
3332reldmmpt2 6173 . . . . . 6  |-  Rel  dom eval
3433ovprc2 6102 . . . . 5  |-  ( -.  R  e.  _V  ->  ( 1o eval  R )  =  (/) )
3516, 34syl5eq 2479 . . . 4  |-  ( -.  R  e.  _V  ->  Q  =  (/) )
3635coeq2d 5027 . . 3  |-  ( -.  R  e.  _V  ->  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  Q )  =  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) ) )  o.  (/) ) )
3731, 36eqtr4d 2470 . 2  |-  ( -.  R  e.  _V  ->  O  =  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) )  |->  ( x  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) ) )  o.  Q
) )
3827, 37pm2.61i 158 1  |-  O  =  ( ( x  e.  ( B  ^m  ( B  ^m  1o ) ) 
|->  ( x  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) ) )  o.  Q )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948   [_csb 3243   (/)c0 3620   {csn 3806    e. cmpt 4258    X. cxp 4868    o. ccom 4874   ` cfv 5446  (class class class)co 6073   1oc1o 6709    ^m cmap 7010   Basecbs 13461   evalSub ces 16401   eval cevl 16402  eval1ce1 16565
This theorem is referenced by:  evl1val  19940  evl1rhm  19941  pf1rcl  19961
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-evl 16413  df-evl1 16572
  Copyright terms: Public domain W3C validator