MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1var Unicode version

Theorem evl1var 19519
Description: Polynomial evaluation maps the variable to the identity function. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1var.q  |-  O  =  (eval1 `  R )
evl1var.v  |-  X  =  (var1 `  R )
evl1var.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
evl1var  |-  ( R  e.  CRing  ->  ( O `  X )  =  (  _I  |`  B )
)

Proof of Theorem evl1var
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngrng 15450 . . . 4  |-  ( R  e.  CRing  ->  R  e.  Ring )
2 evl1var.v . . . . 5  |-  X  =  (var1 `  R )
3 eqid 2358 . . . . 5  |-  (Poly1 `  R
)  =  (Poly1 `  R
)
4 eqid 2358 . . . . 5  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  (Poly1 `  R ) )
52, 3, 4vr1cl 16393 . . . 4  |-  ( R  e.  Ring  ->  X  e.  ( Base `  (Poly1 `  R ) ) )
61, 5syl 15 . . 3  |-  ( R  e.  CRing  ->  X  e.  ( Base `  (Poly1 `  R
) ) )
7 evl1var.q . . . 4  |-  O  =  (eval1 `  R )
8 eqid 2358 . . . 4  |-  ( 1o eval  R )  =  ( 1o eval  R )
9 evl1var.b . . . 4  |-  B  =  ( Base `  R
)
10 eqid 2358 . . . 4  |-  ( 1o mPoly  R )  =  ( 1o mPoly  R )
11 eqid 2358 . . . . 5  |-  (PwSer1 `  R
)  =  (PwSer1 `  R
)
123, 11, 4ply1bas 16373 . . . 4  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  ( 1o mPoly  R ) )
137, 8, 9, 10, 12evl1val 19515 . . 3  |-  ( ( R  e.  CRing  /\  X  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( O `  X )  =  ( ( ( 1o eval  R
) `  X )  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) ) )
146, 13mpdan 649 . 2  |-  ( R  e.  CRing  ->  ( O `  X )  =  ( ( ( 1o eval  R
) `  X )  o.  ( y  e.  B  |->  ( 1o  X.  {
y } ) ) ) )
15 df1o2 6578 . . . . 5  |-  1o  =  { (/) }
16 fvex 5622 . . . . . 6  |-  ( Base `  R )  e.  _V
179, 16eqeltri 2428 . . . . 5  |-  B  e. 
_V
18 0ex 4231 . . . . 5  |-  (/)  e.  _V
19 eqid 2358 . . . . 5  |-  ( z  e.  ( B  ^m  1o )  |->  ( z `
 (/) ) )  =  ( z  e.  ( B  ^m  1o ) 
|->  ( z `  (/) ) )
2015, 17, 18, 19mapsncnv 6902 . . . 4  |-  `' ( z  e.  ( B  ^m  1o )  |->  ( z `  (/) ) )  =  ( y  e.  B  |->  ( 1o  X.  { y } ) )
2120coeq2i 4926 . . 3  |-  ( ( ( 1o eval  R ) `
 X )  o.  `' ( z  e.  ( B  ^m  1o )  |->  ( z `  (/) ) ) )  =  ( ( ( 1o eval  R ) `  X
)  o.  ( y  e.  B  |->  ( 1o 
X.  { y } ) ) )
229ressid 13300 . . . . . . . . 9  |-  ( R  e.  CRing  ->  ( Rs  B
)  =  R )
2322oveq2d 5961 . . . . . . . 8  |-  ( R  e.  CRing  ->  ( 1o mVar  ( Rs  B ) )  =  ( 1o mVar  R ) )
2423fveq1d 5610 . . . . . . 7  |-  ( R  e.  CRing  ->  ( ( 1o mVar  ( Rs  B ) ) `  (/) )  =  ( ( 1o mVar  R ) `  (/) ) )
252vr1val 16370 . . . . . . 7  |-  X  =  ( ( 1o mVar  R
) `  (/) )
2624, 25syl6eqr 2408 . . . . . 6  |-  ( R  e.  CRing  ->  ( ( 1o mVar  ( Rs  B ) ) `  (/) )  =  X )
2726fveq2d 5612 . . . . 5  |-  ( R  e.  CRing  ->  ( ( 1o eval  R ) `  (
( 1o mVar  ( Rs  B
) ) `  (/) ) )  =  ( ( 1o eval  R ) `  X
) )
288, 9evlval 19512 . . . . . 6  |-  ( 1o eval  R )  =  ( ( 1o evalSub  R ) `  B )
29 eqid 2358 . . . . . 6  |-  ( 1o mVar 
( Rs  B ) )  =  ( 1o mVar  ( Rs  B ) )
30 eqid 2358 . . . . . 6  |-  ( Rs  B )  =  ( Rs  B )
31 1on 6573 . . . . . . 7  |-  1o  e.  On
3231a1i 10 . . . . . 6  |-  ( R  e.  CRing  ->  1o  e.  On )
33 id 19 . . . . . 6  |-  ( R  e.  CRing  ->  R  e.  CRing
)
349subrgid 15646 . . . . . . 7  |-  ( R  e.  Ring  ->  B  e.  (SubRing `  R )
)
351, 34syl 15 . . . . . 6  |-  ( R  e.  CRing  ->  B  e.  (SubRing `  R ) )
36 0lt1o 6590 . . . . . . 7  |-  (/)  e.  1o
3736a1i 10 . . . . . 6  |-  ( R  e.  CRing  ->  (/)  e.  1o )
3828, 29, 30, 9, 32, 33, 35, 37evlsvar 19511 . . . . 5  |-  ( R  e.  CRing  ->  ( ( 1o eval  R ) `  (
( 1o mVar  ( Rs  B
) ) `  (/) ) )  =  ( z  e.  ( B  ^m  1o )  |->  ( z `  (/) ) ) )
3927, 38eqtr3d 2392 . . . 4  |-  ( R  e.  CRing  ->  ( ( 1o eval  R ) `  X
)  =  ( z  e.  ( B  ^m  1o )  |->  ( z `
 (/) ) ) )
4039coeq1d 4927 . . 3  |-  ( R  e.  CRing  ->  ( (
( 1o eval  R ) `  X )  o.  `' ( z  e.  ( B  ^m  1o ) 
|->  ( z `  (/) ) ) )  =  ( ( z  e.  ( B  ^m  1o )  |->  ( z `  (/) ) )  o.  `' ( z  e.  ( B  ^m  1o )  |->  ( z `
 (/) ) ) ) )
4121, 40syl5eqr 2404 . 2  |-  ( R  e.  CRing  ->  ( (
( 1o eval  R ) `  X )  o.  (
y  e.  B  |->  ( 1o  X.  { y } ) ) )  =  ( ( z  e.  ( B  ^m  1o )  |->  ( z `
 (/) ) )  o.  `' ( z  e.  ( B  ^m  1o )  |->  ( z `  (/) ) ) ) )
4215, 17, 18, 19mapsnf1o2 6903 . . 3  |-  ( z  e.  ( B  ^m  1o )  |->  ( z `
 (/) ) ) : ( B  ^m  1o )
-1-1-onto-> B
43 f1ococnv2 5583 . . 3  |-  ( ( z  e.  ( B  ^m  1o )  |->  ( z `  (/) ) ) : ( B  ^m  1o ) -1-1-onto-> B  ->  ( (
z  e.  ( B  ^m  1o )  |->  ( z `  (/) ) )  o.  `' ( z  e.  ( B  ^m  1o )  |->  ( z `
 (/) ) ) )  =  (  _I  |`  B ) )
4442, 43mp1i 11 . 2  |-  ( R  e.  CRing  ->  ( (
z  e.  ( B  ^m  1o )  |->  ( z `  (/) ) )  o.  `' ( z  e.  ( B  ^m  1o )  |->  ( z `
 (/) ) ) )  =  (  _I  |`  B ) )
4514, 41, 443eqtrd 2394 1  |-  ( R  e.  CRing  ->  ( O `  X )  =  (  _I  |`  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1642    e. wcel 1710   _Vcvv 2864   (/)c0 3531   {csn 3716    e. cmpt 4158    _I cid 4386   Oncon0 4474    X. cxp 4769   `'ccnv 4770    |` cres 4773    o. ccom 4775   -1-1-onto->wf1o 5336   ` cfv 5337  (class class class)co 5945   1oc1o 6559    ^m cmap 6860   Basecbs 13245   ↾s cress 13246   Ringcrg 15436   CRingccrg 15437  SubRingcsubrg 15640   mVar cmvr 16187   mPoly cmpl 16188   eval cevl 16190  PwSer1cps1 16349  var1cv1 16350  Poly1cpl1 16351  eval1ce1 16353
This theorem is referenced by:  evl1vard  19520  pf1id  19534  fta1blem  19658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165  df-ofr 6166  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-er 6747  df-map 6862  df-pm 6863  df-ixp 6906  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-sup 7284  df-oi 7315  df-card 7662  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-7 9899  df-8 9900  df-9 9901  df-10 9902  df-n0 10058  df-z 10117  df-dec 10217  df-uz 10323  df-fz 10875  df-fzo 10963  df-seq 11139  df-hash 11431  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-sca 13321  df-vsca 13322  df-tset 13324  df-ple 13325  df-ds 13327  df-hom 13329  df-cco 13330  df-prds 13447  df-pws 13449  df-0g 13503  df-gsum 13504  df-mre 13587  df-mrc 13588  df-acs 13590  df-mnd 14466  df-mhm 14514  df-submnd 14515  df-grp 14588  df-minusg 14589  df-sbg 14590  df-mulg 14591  df-subg 14717  df-ghm 14780  df-cntz 14892  df-cmn 15190  df-abl 15191  df-mgp 15425  df-rng 15439  df-cring 15440  df-ur 15441  df-rnghom 15595  df-subrg 15642  df-lmod 15728  df-lss 15789  df-lsp 15828  df-assa 16152  df-asp 16153  df-ascl 16154  df-psr 16197  df-mvr 16198  df-mpl 16199  df-evls 16200  df-evl 16201  df-opsr 16205  df-psr1 16356  df-vr1 16357  df-ply1 16358  df-evl1 16360
  Copyright terms: Public domain W3C validator