MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlseu Unicode version

Theorem evlseu 19504
Description: For a given intepretation of the variables  G and of the scalars  F, this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
evlseu.p  |-  P  =  ( I mPoly  R )
evlseu.c  |-  C  =  ( Base `  S
)
evlseu.a  |-  A  =  (algSc `  P )
evlseu.v  |-  V  =  ( I mVar  R )
evlseu.i  |-  ( ph  ->  I  e.  _V )
evlseu.r  |-  ( ph  ->  R  e.  CRing )
evlseu.s  |-  ( ph  ->  S  e.  CRing )
evlseu.f  |-  ( ph  ->  F  e.  ( R RingHom  S ) )
evlseu.g  |-  ( ph  ->  G : I --> C )
Assertion
Ref Expression
evlseu  |-  ( ph  ->  E! m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  (
m  o.  V )  =  G ) )
Distinct variable groups:    A, m    m, F    m, G    m, I    P, m    ph, m    S, m    m, V
Allowed substitution hints:    C( m)    R( m)

Proof of Theorem evlseu
Dummy variables  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlseu.p . . . 4  |-  P  =  ( I mPoly  R )
2 eqid 2358 . . . 4  |-  ( Base `  P )  =  (
Base `  P )
3 evlseu.c . . . 4  |-  C  =  ( Base `  S
)
4 eqid 2358 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
5 eqid 2358 . . . 4  |-  { z  e.  ( NN0  ^m  I )  |  ( `' z " NN )  e.  Fin }  =  { z  e.  ( NN0  ^m  I )  |  ( `' z
" NN )  e. 
Fin }
6 eqid 2358 . . . 4  |-  (mulGrp `  S )  =  (mulGrp `  S )
7 eqid 2358 . . . 4  |-  (.g `  (mulGrp `  S ) )  =  (.g `  (mulGrp `  S
) )
8 eqid 2358 . . . 4  |-  ( .r
`  S )  =  ( .r `  S
)
9 evlseu.v . . . 4  |-  V  =  ( I mVar  R )
10 eqid 2358 . . . 4  |-  ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  =  ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )
11 evlseu.i . . . 4  |-  ( ph  ->  I  e.  _V )
12 evlseu.r . . . 4  |-  ( ph  ->  R  e.  CRing )
13 evlseu.s . . . 4  |-  ( ph  ->  S  e.  CRing )
14 evlseu.f . . . 4  |-  ( ph  ->  F  e.  ( R RingHom  S ) )
15 evlseu.g . . . 4  |-  ( ph  ->  G : I --> C )
16 evlseu.a . . . 4  |-  A  =  (algSc `  P )
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16evlslem1 19503 . . 3  |-  ( ph  ->  ( ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  e.  ( P RingHom  S )  /\  (
( x  e.  (
Base `  P )  |->  ( S  gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  A )  =  F  /\  ( ( x  e.  ( Base `  P )  |->  ( S 
gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  V )  =  G ) )
18 coeq1 4923 . . . . . . 7  |-  ( m  =  ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  ->  ( m  o.  A )  =  ( ( x  e.  (
Base `  P )  |->  ( S  gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  A ) )
1918eqeq1d 2366 . . . . . 6  |-  ( m  =  ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  ->  ( (
m  o.  A )  =  F  <->  ( (
x  e.  ( Base `  P )  |->  ( S 
gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  A )  =  F ) )
20 coeq1 4923 . . . . . . 7  |-  ( m  =  ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  ->  ( m  o.  V )  =  ( ( x  e.  (
Base `  P )  |->  ( S  gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  V ) )
2120eqeq1d 2366 . . . . . 6  |-  ( m  =  ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  ->  ( (
m  o.  V )  =  G  <->  ( (
x  e.  ( Base `  P )  |->  ( S 
gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  V )  =  G ) )
2219, 21anbi12d 691 . . . . 5  |-  ( m  =  ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  ->  ( (
( m  o.  A
)  =  F  /\  ( m  o.  V
)  =  G )  <-> 
( ( ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  o.  A )  =  F  /\  (
( x  e.  (
Base `  P )  |->  ( S  gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  V )  =  G ) ) )
2322rspcev 2960 . . . 4  |-  ( ( ( x  e.  (
Base `  P )  |->  ( S  gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  e.  ( P RingHom  S
)  /\  ( (
( x  e.  (
Base `  P )  |->  ( S  gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  A )  =  F  /\  ( ( x  e.  ( Base `  P )  |->  ( S 
gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  V )  =  G ) )  ->  E. m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  (
m  o.  V )  =  G ) )
24233impb 1147 . . 3  |-  ( ( ( x  e.  (
Base `  P )  |->  ( S  gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  e.  ( P RingHom  S
)  /\  ( (
x  e.  ( Base `  P )  |->  ( S 
gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  A )  =  F  /\  ( ( x  e.  ( Base `  P )  |->  ( S 
gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  V )  =  G )  ->  E. m  e.  ( P RingHom  S )
( ( m  o.  A )  =  F  /\  ( m  o.  V )  =  G ) )
2517, 24syl 15 . 2  |-  ( ph  ->  E. m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  (
m  o.  V )  =  G ) )
26 crngrng 15450 . . . . . . . . . . 11  |-  ( R  e.  CRing  ->  R  e.  Ring )
2712, 26syl 15 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Ring )
28 eqid 2358 . . . . . . . . . . 11  |-  (Scalar `  P )  =  (Scalar `  P )
291mplrng 16295 . . . . . . . . . . 11  |-  ( ( I  e.  _V  /\  R  e.  Ring )  ->  P  e.  Ring )
301mpllmod 16294 . . . . . . . . . . 11  |-  ( ( I  e.  _V  /\  R  e.  Ring )  ->  P  e.  LMod )
31 eqid 2358 . . . . . . . . . . 11  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
3216, 28, 29, 30, 31, 2asclf 16176 . . . . . . . . . 10  |-  ( ( I  e.  _V  /\  R  e.  Ring )  ->  A : ( Base `  (Scalar `  P ) ) --> (
Base `  P )
)
3311, 27, 32syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  A : ( Base `  (Scalar `  P )
) --> ( Base `  P
) )
34 ffun 5474 . . . . . . . . 9  |-  ( A : ( Base `  (Scalar `  P ) ) --> (
Base `  P )  ->  Fun  A )
3533, 34syl 15 . . . . . . . 8  |-  ( ph  ->  Fun  A )
36 funcoeqres 5587 . . . . . . . 8  |-  ( ( Fun  A  /\  (
m  o.  A )  =  F )  -> 
( m  |`  ran  A
)  =  ( F  o.  `' A ) )
3735, 36sylan 457 . . . . . . 7  |-  ( (
ph  /\  ( m  o.  A )  =  F )  ->  ( m  |` 
ran  A )  =  ( F  o.  `' A ) )
381, 9, 2, 11, 27mvrf2 16332 . . . . . . . . 9  |-  ( ph  ->  V : I --> ( Base `  P ) )
39 ffun 5474 . . . . . . . . 9  |-  ( V : I --> ( Base `  P )  ->  Fun  V )
4038, 39syl 15 . . . . . . . 8  |-  ( ph  ->  Fun  V )
41 funcoeqres 5587 . . . . . . . 8  |-  ( ( Fun  V  /\  (
m  o.  V )  =  G )  -> 
( m  |`  ran  V
)  =  ( G  o.  `' V ) )
4240, 41sylan 457 . . . . . . 7  |-  ( (
ph  /\  ( m  o.  V )  =  G )  ->  ( m  |` 
ran  V )  =  ( G  o.  `' V ) )
4337, 42anim12dan 810 . . . . . 6  |-  ( (
ph  /\  ( (
m  o.  A )  =  F  /\  (
m  o.  V )  =  G ) )  ->  ( ( m  |`  ran  A )  =  ( F  o.  `' A )  /\  (
m  |`  ran  V )  =  ( G  o.  `' V ) ) )
4443ex 423 . . . . 5  |-  ( ph  ->  ( ( ( m  o.  A )  =  F  /\  ( m  o.  V )  =  G )  ->  (
( m  |`  ran  A
)  =  ( F  o.  `' A )  /\  ( m  |`  ran  V )  =  ( G  o.  `' V
) ) ) )
45 resundi 5051 . . . . . 6  |-  ( m  |`  ( ran  A  u.  ran  V ) )  =  ( ( m  |`  ran  A )  u.  (
m  |`  ran  V ) )
46 uneq12 3400 . . . . . 6  |-  ( ( ( m  |`  ran  A
)  =  ( F  o.  `' A )  /\  ( m  |`  ran  V )  =  ( G  o.  `' V
) )  ->  (
( m  |`  ran  A
)  u.  ( m  |`  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V ) ) )
4745, 46syl5eq 2402 . . . . 5  |-  ( ( ( m  |`  ran  A
)  =  ( F  o.  `' A )  /\  ( m  |`  ran  V )  =  ( G  o.  `' V
) )  ->  (
m  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V ) ) )
4844, 47syl6 29 . . . 4  |-  ( ph  ->  ( ( ( m  o.  A )  =  F  /\  ( m  o.  V )  =  G )  ->  (
m  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V ) ) ) )
4948ralrimivw 2703 . . 3  |-  ( ph  ->  A. m  e.  ( P RingHom  S ) ( ( ( m  o.  A
)  =  F  /\  ( m  o.  V
)  =  G )  ->  ( m  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) ) ) )
50 eqtr3 2377 . . . . . 6  |-  ( ( ( m  |`  ( ran  A  u.  ran  V
) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) )  /\  (
n  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V ) ) )  ->  ( m  |`  ( ran  A  u.  ran  V ) )  =  ( n  |`  ( ran  A  u.  ran  V ) ) )
51 eqid 2358 . . . . . . . . . . . . 13  |-  ( I mPwSer  R )  =  ( I mPwSer  R )
5251, 11, 12psrassa 16257 . . . . . . . . . . . 12  |-  ( ph  ->  ( I mPwSer  R )  e. AssAlg )
53 eqid 2358 . . . . . . . . . . . . . 14  |-  ( Base `  ( I mPwSer  R ) )  =  ( Base `  ( I mPwSer  R ) )
5451, 9, 53, 11, 27mvrf 16268 . . . . . . . . . . . . 13  |-  ( ph  ->  V : I --> ( Base `  ( I mPwSer  R ) ) )
55 frn 5478 . . . . . . . . . . . . 13  |-  ( V : I --> ( Base `  ( I mPwSer  R ) )  ->  ran  V  C_  ( Base `  ( I mPwSer  R ) ) )
5654, 55syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  ran  V  C_  ( Base `  ( I mPwSer  R
) ) )
57 eqid 2358 . . . . . . . . . . . . 13  |-  (AlgSpan `  (
I mPwSer  R ) )  =  (AlgSpan `  ( I mPwSer  R ) )
58 eqid 2358 . . . . . . . . . . . . 13  |-  (algSc `  ( I mPwSer  R ) )  =  (algSc `  (
I mPwSer  R ) )
59 eqid 2358 . . . . . . . . . . . . 13  |-  (mrCls `  (SubRing `  ( I mPwSer  R
) ) )  =  (mrCls `  (SubRing `  (
I mPwSer  R ) ) )
6057, 58, 59, 53aspval2 16185 . . . . . . . . . . . 12  |-  ( ( ( I mPwSer  R )  e. AssAlg  /\  ran  V  C_  ( Base `  ( I mPwSer  R ) ) )  -> 
( (AlgSpan `  (
I mPwSer  R ) ) `  ran  V )  =  ( (mrCls `  (SubRing `  (
I mPwSer  R ) ) ) `
 ( ran  (algSc `  ( I mPwSer  R ) )  u.  ran  V
) ) )
6152, 56, 60syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( (AlgSpan `  (
I mPwSer  R ) ) `  ran  V )  =  ( (mrCls `  (SubRing `  (
I mPwSer  R ) ) ) `
 ( ran  (algSc `  ( I mPwSer  R ) )  u.  ran  V
) ) )
621, 51, 9, 57, 11, 12mplbas2 16311 . . . . . . . . . . 11  |-  ( ph  ->  ( (AlgSpan `  (
I mPwSer  R ) ) `  ran  V )  =  (
Base `  P )
)
6351, 1, 2, 11, 27mplsubrg 16283 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Base `  P
)  e.  (SubRing `  (
I mPwSer  R ) ) )
641, 51, 2mplval2 16275 . . . . . . . . . . . . . . . 16  |-  P  =  ( ( I mPwSer  R
)s  ( Base `  P
) )
6564subsubrg2 15671 . . . . . . . . . . . . . . 15  |-  ( (
Base `  P )  e.  (SubRing `  ( I mPwSer  R ) )  ->  (SubRing `  P )  =  ( (SubRing `  ( I mPwSer  R ) )  i^i  ~P ( Base `  P )
) )
6663, 65syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  (SubRing `  P )  =  ( (SubRing `  (
I mPwSer  R ) )  i^i 
~P ( Base `  P
) ) )
6766fveq2d 5612 . . . . . . . . . . . . 13  |-  ( ph  ->  (mrCls `  (SubRing `  P
) )  =  (mrCls `  ( (SubRing `  (
I mPwSer  R ) )  i^i 
~P ( Base `  P
) ) ) )
6858, 64ressascl 16182 . . . . . . . . . . . . . . . . 17  |-  ( (
Base `  P )  e.  (SubRing `  ( I mPwSer  R ) )  ->  (algSc `  ( I mPwSer  R ) )  =  (algSc `  P ) )
6963, 68syl 15 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  (algSc `  ( I mPwSer  R ) )  =  (algSc `  P ) )
7069, 16syl6reqr 2409 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  =  (algSc `  ( I mPwSer  R ) ) )
7170rneqd 4988 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  A  =  ran  (algSc `  ( I mPwSer  R
) ) )
7271uneq1d 3404 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ran  A  u.  ran  V )  =  ( ran  (algSc `  (
I mPwSer  R ) )  u. 
ran  V ) )
7367, 72fveq12d 5614 . . . . . . . . . . . 12  |-  ( ph  ->  ( (mrCls `  (SubRing `  P ) ) `  ( ran  A  u.  ran  V ) )  =  ( (mrCls `  ( (SubRing `  ( I mPwSer  R ) )  i^i  ~P ( Base `  P ) ) ) `  ( ran  (algSc `  ( I mPwSer  R ) )  u.  ran  V ) ) )
74 assarng 16160 . . . . . . . . . . . . . 14  |-  ( ( I mPwSer  R )  e. AssAlg  ->  ( I mPwSer  R )  e.  Ring )
7553subrgmre 15668 . . . . . . . . . . . . . 14  |-  ( ( I mPwSer  R )  e. 
Ring  ->  (SubRing `  ( I mPwSer  R ) )  e.  (Moore `  ( Base `  (
I mPwSer  R ) ) ) )
7652, 74, 753syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  (SubRing `  ( I mPwSer  R ) )  e.  (Moore `  ( Base `  (
I mPwSer  R ) ) ) )
77 frn 5478 . . . . . . . . . . . . . . . 16  |-  ( A : ( Base `  (Scalar `  P ) ) --> (
Base `  P )  ->  ran  A  C_  ( Base `  P ) )
7833, 77syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  A  C_  ( Base `  P ) )
7971, 78eqsstr3d 3289 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  (algSc `  (
I mPwSer  R ) )  C_  ( Base `  P )
)
80 frn 5478 . . . . . . . . . . . . . . 15  |-  ( V : I --> ( Base `  P )  ->  ran  V 
C_  ( Base `  P
) )
8138, 80syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  V  C_  ( Base `  P ) )
8279, 81unssd 3427 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ran  (algSc `  ( I mPwSer  R ) )  u.  ran  V ) 
C_  ( Base `  P
) )
83 eqid 2358 . . . . . . . . . . . . . 14  |-  (mrCls `  ( (SubRing `  ( I mPwSer  R ) )  i^i  ~P ( Base `  P )
) )  =  (mrCls `  ( (SubRing `  (
I mPwSer  R ) )  i^i 
~P ( Base `  P
) ) )
8459, 83submrc 13629 . . . . . . . . . . . . 13  |-  ( ( (SubRing `  ( I mPwSer  R ) )  e.  (Moore `  ( Base `  (
I mPwSer  R ) ) )  /\  ( Base `  P
)  e.  (SubRing `  (
I mPwSer  R ) )  /\  ( ran  (algSc `  (
I mPwSer  R ) )  u. 
ran  V )  C_  ( Base `  P )
)  ->  ( (mrCls `  ( (SubRing `  (
I mPwSer  R ) )  i^i 
~P ( Base `  P
) ) ) `  ( ran  (algSc `  (
I mPwSer  R ) )  u. 
ran  V ) )  =  ( (mrCls `  (SubRing `  ( I mPwSer  R
) ) ) `  ( ran  (algSc `  (
I mPwSer  R ) )  u. 
ran  V ) ) )
8576, 63, 82, 84syl3anc 1182 . . . . . . . . . . . 12  |-  ( ph  ->  ( (mrCls `  (
(SubRing `  ( I mPwSer  R
) )  i^i  ~P ( Base `  P )
) ) `  ( ran  (algSc `  ( I mPwSer  R ) )  u.  ran  V ) )  =  ( (mrCls `  (SubRing `  (
I mPwSer  R ) ) ) `
 ( ran  (algSc `  ( I mPwSer  R ) )  u.  ran  V
) ) )
8673, 85eqtr2d 2391 . . . . . . . . . . 11  |-  ( ph  ->  ( (mrCls `  (SubRing `  ( I mPwSer  R ) ) ) `  ( ran  (algSc `  ( I mPwSer  R ) )  u.  ran  V ) )  =  ( (mrCls `  (SubRing `  P
) ) `  ( ran  A  u.  ran  V
) ) )
8761, 62, 863eqtr3d 2398 . . . . . . . . . 10  |-  ( ph  ->  ( Base `  P
)  =  ( (mrCls `  (SubRing `  P )
) `  ( ran  A  u.  ran  V ) ) )
8887ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S )
) )  /\  ( ran  A  u.  ran  V
)  C_  dom  ( m  i^i  n ) )  ->  ( Base `  P
)  =  ( (mrCls `  (SubRing `  P )
) `  ( ran  A  u.  ran  V ) ) )
8911, 27, 29syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  Ring )
902subrgmre 15668 . . . . . . . . . . . 12  |-  ( P  e.  Ring  ->  (SubRing `  P
)  e.  (Moore `  ( Base `  P )
) )
9189, 90syl 15 . . . . . . . . . . 11  |-  ( ph  ->  (SubRing `  P )  e.  (Moore `  ( Base `  P ) ) )
9291ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S )
) )  /\  ( ran  A  u.  ran  V
)  C_  dom  ( m  i^i  n ) )  ->  (SubRing `  P )  e.  (Moore `  ( Base `  P ) ) )
93 simpr 447 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S )
) )  /\  ( ran  A  u.  ran  V
)  C_  dom  ( m  i^i  n ) )  ->  ( ran  A  u.  ran  V )  C_  dom  ( m  i^i  n
) )
94 rhmeql 15674 . . . . . . . . . . 11  |-  ( ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S )
)  ->  dom  ( m  i^i  n )  e.  (SubRing `  P )
)
9594ad2antlr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S )
) )  /\  ( ran  A  u.  ran  V
)  C_  dom  ( m  i^i  n ) )  ->  dom  ( m  i^i  n )  e.  (SubRing `  P ) )
96 eqid 2358 . . . . . . . . . . 11  |-  (mrCls `  (SubRing `  P ) )  =  (mrCls `  (SubRing `  P ) )
9796mrcsscl 13621 . . . . . . . . . 10  |-  ( ( (SubRing `  P )  e.  (Moore `  ( Base `  P ) )  /\  ( ran  A  u.  ran  V )  C_  dom  ( m  i^i  n )  /\  dom  ( m  i^i  n
)  e.  (SubRing `  P
) )  ->  (
(mrCls `  (SubRing `  P
) ) `  ( ran  A  u.  ran  V
) )  C_  dom  ( m  i^i  n
) )
9892, 93, 95, 97syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S )
) )  /\  ( ran  A  u.  ran  V
)  C_  dom  ( m  i^i  n ) )  ->  ( (mrCls `  (SubRing `  P ) ) `
 ( ran  A  u.  ran  V ) ) 
C_  dom  ( m  i^i  n ) )
9988, 98eqsstrd 3288 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S )
) )  /\  ( ran  A  u.  ran  V
)  C_  dom  ( m  i^i  n ) )  ->  ( Base `  P
)  C_  dom  ( m  i^i  n ) )
10099ex 423 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ( ( ran 
A  u.  ran  V
)  C_  dom  ( m  i^i  n )  -> 
( Base `  P )  C_ 
dom  ( m  i^i  n ) ) )
101 simprl 732 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  m  e.  ( P RingHom  S ) )
1022, 3rhmf 15603 . . . . . . . . 9  |-  ( m  e.  ( P RingHom  S
)  ->  m :
( Base `  P ) --> C )
103 ffn 5472 . . . . . . . . 9  |-  ( m : ( Base `  P
) --> C  ->  m  Fn  ( Base `  P
) )
104101, 102, 1033syl 18 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  m  Fn  ( Base `  P ) )
105 simprr 733 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  n  e.  ( P RingHom  S ) )
1062, 3rhmf 15603 . . . . . . . . 9  |-  ( n  e.  ( P RingHom  S
)  ->  n :
( Base `  P ) --> C )
107 ffn 5472 . . . . . . . . 9  |-  ( n : ( Base `  P
) --> C  ->  n  Fn  ( Base `  P
) )
108105, 106, 1073syl 18 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  n  Fn  ( Base `  P ) )
10978adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ran  A  C_  ( Base `  P ) )
11081adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ran  V  C_  ( Base `  P ) )
111109, 110unssd 3427 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ( ran  A  u.  ran  V )  C_  ( Base `  P )
)
112 fnreseql 5718 . . . . . . . 8  |-  ( ( m  Fn  ( Base `  P )  /\  n  Fn  ( Base `  P
)  /\  ( ran  A  u.  ran  V ) 
C_  ( Base `  P
) )  ->  (
( m  |`  ( ran  A  u.  ran  V
) )  =  ( n  |`  ( ran  A  u.  ran  V ) )  <->  ( ran  A  u.  ran  V )  C_  dom  ( m  i^i  n
) ) )
113104, 108, 111, 112syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ( ( m  |`  ( ran  A  u.  ran  V ) )  =  ( n  |`  ( ran  A  u.  ran  V
) )  <->  ( ran  A  u.  ran  V ) 
C_  dom  ( m  i^i  n ) ) )
114 fneqeql2 5717 . . . . . . . 8  |-  ( ( m  Fn  ( Base `  P )  /\  n  Fn  ( Base `  P
) )  ->  (
m  =  n  <->  ( Base `  P )  C_  dom  ( m  i^i  n
) ) )
115104, 108, 114syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ( m  =  n  <->  ( Base `  P
)  C_  dom  ( m  i^i  n ) ) )
116100, 113, 1153imtr4d 259 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ( ( m  |`  ( ran  A  u.  ran  V ) )  =  ( n  |`  ( ran  A  u.  ran  V
) )  ->  m  =  n ) )
11750, 116syl5 28 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ( ( ( m  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A
)  u.  ( G  o.  `' V ) )  /\  ( n  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) ) )  ->  m  =  n )
)
118117ralrimivva 2711 . . . 4  |-  ( ph  ->  A. m  e.  ( P RingHom  S ) A. n  e.  ( P RingHom  S )
( ( ( m  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) )  /\  (
n  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V ) ) )  ->  m  =  n ) )
119 reseq1 5031 . . . . . 6  |-  ( m  =  n  ->  (
m  |`  ( ran  A  u.  ran  V ) )  =  ( n  |`  ( ran  A  u.  ran  V ) ) )
120119eqeq1d 2366 . . . . 5  |-  ( m  =  n  ->  (
( m  |`  ( ran  A  u.  ran  V
) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) )  <->  ( n  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) ) ) )
121120rmo4 3034 . . . 4  |-  ( E* m  e.  ( P RingHom  S ) ( m  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) )  <->  A. m  e.  ( P RingHom  S ) A. n  e.  ( P RingHom  S ) ( ( ( m  |`  ( ran  A  u.  ran  V
) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) )  /\  (
n  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V ) ) )  ->  m  =  n ) )
122118, 121sylibr 203 . . 3  |-  ( ph  ->  E* m  e.  ( P RingHom  S ) ( m  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) ) )
123 rmoim 3040 . . 3  |-  ( A. m  e.  ( P RingHom  S ) ( ( ( m  o.  A )  =  F  /\  (
m  o.  V )  =  G )  -> 
( m  |`  ( ran  A  u.  ran  V
) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) ) )  -> 
( E* m  e.  ( P RingHom  S )
( m  |`  ( ran  A  u.  ran  V
) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) )  ->  E* m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  ( m  o.  V )  =  G ) ) )
12449, 122, 123sylc 56 . 2  |-  ( ph  ->  E* m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  (
m  o.  V )  =  G ) )
125 reu5 2829 . 2  |-  ( E! m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  (
m  o.  V )  =  G )  <->  ( E. m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  ( m  o.  V )  =  G )  /\  E* m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  ( m  o.  V )  =  G ) ) )
12625, 124, 125sylanbrc 645 1  |-  ( ph  ->  E! m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  (
m  o.  V )  =  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   A.wral 2619   E.wrex 2620   E!wreu 2621   E*wrmo 2622   {crab 2623   _Vcvv 2864    u. cun 3226    i^i cin 3227    C_ wss 3228   ~Pcpw 3701    e. cmpt 4158   `'ccnv 4770   dom cdm 4771   ran crn 4772    |` cres 4773   "cima 4774    o. ccom 4775   Fun wfun 5331    Fn wfn 5332   -->wf 5333   ` cfv 5337  (class class class)co 5945    o Fcof 6163    ^m cmap 6860   Fincfn 6951   NNcn 9836   NN0cn0 10057   Basecbs 13245   .rcmulr 13306  Scalarcsca 13308    gsumg cgsu 13500  Moorecmre 13583  mrClscmrc 13584  .gcmg 14465  mulGrpcmgp 15424   Ringcrg 15436   CRingccrg 15437   RingHom crh 15593  SubRingcsubrg 15640  AssAlgcasa 16149  AlgSpancasp 16150  algSccascl 16151   mPwSer cmps 16186   mVar cmvr 16187   mPoly cmpl 16188
This theorem is referenced by:  evlsval2  19508
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165  df-ofr 6166  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-er 6747  df-map 6862  df-pm 6863  df-ixp 6906  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-oi 7315  df-card 7662  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-7 9899  df-8 9900  df-9 9901  df-n0 10058  df-z 10117  df-uz 10323  df-fz 10875  df-fzo 10963  df-seq 11139  df-hash 11431  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-sca 13321  df-vsca 13322  df-tset 13324  df-0g 13503  df-gsum 13504  df-mre 13587  df-mrc 13588  df-acs 13590  df-mnd 14466  df-mhm 14514  df-submnd 14515  df-grp 14588  df-minusg 14589  df-sbg 14590  df-mulg 14591  df-subg 14717  df-ghm 14780  df-cntz 14892  df-cmn 15190  df-abl 15191  df-mgp 15425  df-rng 15439  df-cring 15440  df-ur 15441  df-rnghom 15595  df-subrg 15642  df-lmod 15728  df-lss 15789  df-lsp 15828  df-assa 16152  df-asp 16153  df-ascl 16154  df-psr 16197  df-mvr 16198  df-mpl 16199
  Copyright terms: Public domain W3C validator