MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlseu Unicode version

Theorem evlseu 19890
Description: For a given intepretation of the variables  G and of the scalars  F, this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
evlseu.p  |-  P  =  ( I mPoly  R )
evlseu.c  |-  C  =  ( Base `  S
)
evlseu.a  |-  A  =  (algSc `  P )
evlseu.v  |-  V  =  ( I mVar  R )
evlseu.i  |-  ( ph  ->  I  e.  _V )
evlseu.r  |-  ( ph  ->  R  e.  CRing )
evlseu.s  |-  ( ph  ->  S  e.  CRing )
evlseu.f  |-  ( ph  ->  F  e.  ( R RingHom  S ) )
evlseu.g  |-  ( ph  ->  G : I --> C )
Assertion
Ref Expression
evlseu  |-  ( ph  ->  E! m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  (
m  o.  V )  =  G ) )
Distinct variable groups:    A, m    m, F    m, G    m, I    P, m    ph, m    S, m    m, V
Allowed substitution hints:    C( m)    R( m)

Proof of Theorem evlseu
Dummy variables  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlseu.p . . . 4  |-  P  =  ( I mPoly  R )
2 eqid 2404 . . . 4  |-  ( Base `  P )  =  (
Base `  P )
3 evlseu.c . . . 4  |-  C  =  ( Base `  S
)
4 eqid 2404 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
5 eqid 2404 . . . 4  |-  { z  e.  ( NN0  ^m  I )  |  ( `' z " NN )  e.  Fin }  =  { z  e.  ( NN0  ^m  I )  |  ( `' z
" NN )  e. 
Fin }
6 eqid 2404 . . . 4  |-  (mulGrp `  S )  =  (mulGrp `  S )
7 eqid 2404 . . . 4  |-  (.g `  (mulGrp `  S ) )  =  (.g `  (mulGrp `  S
) )
8 eqid 2404 . . . 4  |-  ( .r
`  S )  =  ( .r `  S
)
9 evlseu.v . . . 4  |-  V  =  ( I mVar  R )
10 eqid 2404 . . . 4  |-  ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  =  ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )
11 evlseu.i . . . 4  |-  ( ph  ->  I  e.  _V )
12 evlseu.r . . . 4  |-  ( ph  ->  R  e.  CRing )
13 evlseu.s . . . 4  |-  ( ph  ->  S  e.  CRing )
14 evlseu.f . . . 4  |-  ( ph  ->  F  e.  ( R RingHom  S ) )
15 evlseu.g . . . 4  |-  ( ph  ->  G : I --> C )
16 evlseu.a . . . 4  |-  A  =  (algSc `  P )
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16evlslem1 19889 . . 3  |-  ( ph  ->  ( ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  e.  ( P RingHom  S )  /\  (
( x  e.  (
Base `  P )  |->  ( S  gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  A )  =  F  /\  ( ( x  e.  ( Base `  P )  |->  ( S 
gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  V )  =  G ) )
18 coeq1 4989 . . . . . . 7  |-  ( m  =  ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  ->  ( m  o.  A )  =  ( ( x  e.  (
Base `  P )  |->  ( S  gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  A ) )
1918eqeq1d 2412 . . . . . 6  |-  ( m  =  ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  ->  ( (
m  o.  A )  =  F  <->  ( (
x  e.  ( Base `  P )  |->  ( S 
gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  A )  =  F ) )
20 coeq1 4989 . . . . . . 7  |-  ( m  =  ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  ->  ( m  o.  V )  =  ( ( x  e.  (
Base `  P )  |->  ( S  gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  V ) )
2120eqeq1d 2412 . . . . . 6  |-  ( m  =  ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  ->  ( (
m  o.  V )  =  G  <->  ( (
x  e.  ( Base `  P )  |->  ( S 
gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  V )  =  G ) )
2219, 21anbi12d 692 . . . . 5  |-  ( m  =  ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  ->  ( (
( m  o.  A
)  =  F  /\  ( m  o.  V
)  =  G )  <-> 
( ( ( x  e.  ( Base `  P
)  |->  ( S  gsumg  ( y  e.  { z  e.  ( NN0  ^m  I
)  |  ( `' z " NN )  e.  Fin }  |->  ( ( F `  (
x `  y )
) ( .r `  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S
) ) G ) ) ) ) ) )  o.  A )  =  F  /\  (
( x  e.  (
Base `  P )  |->  ( S  gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  V )  =  G ) ) )
2322rspcev 3012 . . . 4  |-  ( ( ( x  e.  (
Base `  P )  |->  ( S  gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  e.  ( P RingHom  S
)  /\  ( (
( x  e.  (
Base `  P )  |->  ( S  gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  A )  =  F  /\  ( ( x  e.  ( Base `  P )  |->  ( S 
gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  V )  =  G ) )  ->  E. m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  (
m  o.  V )  =  G ) )
24233impb 1149 . . 3  |-  ( ( ( x  e.  (
Base `  P )  |->  ( S  gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  e.  ( P RingHom  S
)  /\  ( (
x  e.  ( Base `  P )  |->  ( S 
gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  A )  =  F  /\  ( ( x  e.  ( Base `  P )  |->  ( S 
gsumg  ( y  e.  {
z  e.  ( NN0 
^m  I )  |  ( `' z " NN )  e.  Fin } 
|->  ( ( F `  ( x `  y
) ) ( .r
`  S ) ( (mulGrp `  S )  gsumg  ( y  o F (.g `  (mulGrp `  S )
) G ) ) ) ) ) )  o.  V )  =  G )  ->  E. m  e.  ( P RingHom  S )
( ( m  o.  A )  =  F  /\  ( m  o.  V )  =  G ) )
2517, 24syl 16 . 2  |-  ( ph  ->  E. m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  (
m  o.  V )  =  G ) )
26 crngrng 15629 . . . . . . . . . . 11  |-  ( R  e.  CRing  ->  R  e.  Ring )
2712, 26syl 16 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Ring )
28 eqid 2404 . . . . . . . . . . 11  |-  (Scalar `  P )  =  (Scalar `  P )
291mplrng 16470 . . . . . . . . . . 11  |-  ( ( I  e.  _V  /\  R  e.  Ring )  ->  P  e.  Ring )
301mpllmod 16469 . . . . . . . . . . 11  |-  ( ( I  e.  _V  /\  R  e.  Ring )  ->  P  e.  LMod )
31 eqid 2404 . . . . . . . . . . 11  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
3216, 28, 29, 30, 31, 2asclf 16351 . . . . . . . . . 10  |-  ( ( I  e.  _V  /\  R  e.  Ring )  ->  A : ( Base `  (Scalar `  P ) ) --> (
Base `  P )
)
3311, 27, 32syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  A : ( Base `  (Scalar `  P )
) --> ( Base `  P
) )
34 ffun 5552 . . . . . . . . 9  |-  ( A : ( Base `  (Scalar `  P ) ) --> (
Base `  P )  ->  Fun  A )
3533, 34syl 16 . . . . . . . 8  |-  ( ph  ->  Fun  A )
36 funcoeqres 5665 . . . . . . . 8  |-  ( ( Fun  A  /\  (
m  o.  A )  =  F )  -> 
( m  |`  ran  A
)  =  ( F  o.  `' A ) )
3735, 36sylan 458 . . . . . . 7  |-  ( (
ph  /\  ( m  o.  A )  =  F )  ->  ( m  |` 
ran  A )  =  ( F  o.  `' A ) )
381, 9, 2, 11, 27mvrf2 16507 . . . . . . . . 9  |-  ( ph  ->  V : I --> ( Base `  P ) )
39 ffun 5552 . . . . . . . . 9  |-  ( V : I --> ( Base `  P )  ->  Fun  V )
4038, 39syl 16 . . . . . . . 8  |-  ( ph  ->  Fun  V )
41 funcoeqres 5665 . . . . . . . 8  |-  ( ( Fun  V  /\  (
m  o.  V )  =  G )  -> 
( m  |`  ran  V
)  =  ( G  o.  `' V ) )
4240, 41sylan 458 . . . . . . 7  |-  ( (
ph  /\  ( m  o.  V )  =  G )  ->  ( m  |` 
ran  V )  =  ( G  o.  `' V ) )
4337, 42anim12dan 811 . . . . . 6  |-  ( (
ph  /\  ( (
m  o.  A )  =  F  /\  (
m  o.  V )  =  G ) )  ->  ( ( m  |`  ran  A )  =  ( F  o.  `' A )  /\  (
m  |`  ran  V )  =  ( G  o.  `' V ) ) )
4443ex 424 . . . . 5  |-  ( ph  ->  ( ( ( m  o.  A )  =  F  /\  ( m  o.  V )  =  G )  ->  (
( m  |`  ran  A
)  =  ( F  o.  `' A )  /\  ( m  |`  ran  V )  =  ( G  o.  `' V
) ) ) )
45 resundi 5119 . . . . . 6  |-  ( m  |`  ( ran  A  u.  ran  V ) )  =  ( ( m  |`  ran  A )  u.  (
m  |`  ran  V ) )
46 uneq12 3456 . . . . . 6  |-  ( ( ( m  |`  ran  A
)  =  ( F  o.  `' A )  /\  ( m  |`  ran  V )  =  ( G  o.  `' V
) )  ->  (
( m  |`  ran  A
)  u.  ( m  |`  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V ) ) )
4745, 46syl5eq 2448 . . . . 5  |-  ( ( ( m  |`  ran  A
)  =  ( F  o.  `' A )  /\  ( m  |`  ran  V )  =  ( G  o.  `' V
) )  ->  (
m  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V ) ) )
4844, 47syl6 31 . . . 4  |-  ( ph  ->  ( ( ( m  o.  A )  =  F  /\  ( m  o.  V )  =  G )  ->  (
m  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V ) ) ) )
4948ralrimivw 2750 . . 3  |-  ( ph  ->  A. m  e.  ( P RingHom  S ) ( ( ( m  o.  A
)  =  F  /\  ( m  o.  V
)  =  G )  ->  ( m  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) ) ) )
50 eqtr3 2423 . . . . . 6  |-  ( ( ( m  |`  ( ran  A  u.  ran  V
) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) )  /\  (
n  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V ) ) )  ->  ( m  |`  ( ran  A  u.  ran  V ) )  =  ( n  |`  ( ran  A  u.  ran  V ) ) )
51 eqid 2404 . . . . . . . . . . . . 13  |-  ( I mPwSer  R )  =  ( I mPwSer  R )
5251, 11, 12psrassa 16432 . . . . . . . . . . . 12  |-  ( ph  ->  ( I mPwSer  R )  e. AssAlg )
53 eqid 2404 . . . . . . . . . . . . . 14  |-  ( Base `  ( I mPwSer  R ) )  =  ( Base `  ( I mPwSer  R ) )
5451, 9, 53, 11, 27mvrf 16443 . . . . . . . . . . . . 13  |-  ( ph  ->  V : I --> ( Base `  ( I mPwSer  R ) ) )
55 frn 5556 . . . . . . . . . . . . 13  |-  ( V : I --> ( Base `  ( I mPwSer  R ) )  ->  ran  V  C_  ( Base `  ( I mPwSer  R ) ) )
5654, 55syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ran  V  C_  ( Base `  ( I mPwSer  R
) ) )
57 eqid 2404 . . . . . . . . . . . . 13  |-  (AlgSpan `  (
I mPwSer  R ) )  =  (AlgSpan `  ( I mPwSer  R ) )
58 eqid 2404 . . . . . . . . . . . . 13  |-  (algSc `  ( I mPwSer  R ) )  =  (algSc `  (
I mPwSer  R ) )
59 eqid 2404 . . . . . . . . . . . . 13  |-  (mrCls `  (SubRing `  ( I mPwSer  R
) ) )  =  (mrCls `  (SubRing `  (
I mPwSer  R ) ) )
6057, 58, 59, 53aspval2 16360 . . . . . . . . . . . 12  |-  ( ( ( I mPwSer  R )  e. AssAlg  /\  ran  V  C_  ( Base `  ( I mPwSer  R ) ) )  -> 
( (AlgSpan `  (
I mPwSer  R ) ) `  ran  V )  =  ( (mrCls `  (SubRing `  (
I mPwSer  R ) ) ) `
 ( ran  (algSc `  ( I mPwSer  R ) )  u.  ran  V
) ) )
6152, 56, 60syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( (AlgSpan `  (
I mPwSer  R ) ) `  ran  V )  =  ( (mrCls `  (SubRing `  (
I mPwSer  R ) ) ) `
 ( ran  (algSc `  ( I mPwSer  R ) )  u.  ran  V
) ) )
621, 51, 9, 57, 11, 12mplbas2 16486 . . . . . . . . . . 11  |-  ( ph  ->  ( (AlgSpan `  (
I mPwSer  R ) ) `  ran  V )  =  (
Base `  P )
)
6351, 1, 2, 11, 27mplsubrg 16458 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Base `  P
)  e.  (SubRing `  (
I mPwSer  R ) ) )
641, 51, 2mplval2 16450 . . . . . . . . . . . . . . . 16  |-  P  =  ( ( I mPwSer  R
)s  ( Base `  P
) )
6564subsubrg2 15850 . . . . . . . . . . . . . . 15  |-  ( (
Base `  P )  e.  (SubRing `  ( I mPwSer  R ) )  ->  (SubRing `  P )  =  ( (SubRing `  ( I mPwSer  R ) )  i^i  ~P ( Base `  P )
) )
6663, 65syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  (SubRing `  P )  =  ( (SubRing `  (
I mPwSer  R ) )  i^i 
~P ( Base `  P
) ) )
6766fveq2d 5691 . . . . . . . . . . . . 13  |-  ( ph  ->  (mrCls `  (SubRing `  P
) )  =  (mrCls `  ( (SubRing `  (
I mPwSer  R ) )  i^i 
~P ( Base `  P
) ) ) )
6858, 64ressascl 16357 . . . . . . . . . . . . . . . . 17  |-  ( (
Base `  P )  e.  (SubRing `  ( I mPwSer  R ) )  ->  (algSc `  ( I mPwSer  R ) )  =  (algSc `  P ) )
6963, 68syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  (algSc `  ( I mPwSer  R ) )  =  (algSc `  P ) )
7069, 16syl6reqr 2455 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  =  (algSc `  ( I mPwSer  R ) ) )
7170rneqd 5056 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  A  =  ran  (algSc `  ( I mPwSer  R
) ) )
7271uneq1d 3460 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ran  A  u.  ran  V )  =  ( ran  (algSc `  (
I mPwSer  R ) )  u. 
ran  V ) )
7367, 72fveq12d 5693 . . . . . . . . . . . 12  |-  ( ph  ->  ( (mrCls `  (SubRing `  P ) ) `  ( ran  A  u.  ran  V ) )  =  ( (mrCls `  ( (SubRing `  ( I mPwSer  R ) )  i^i  ~P ( Base `  P ) ) ) `  ( ran  (algSc `  ( I mPwSer  R ) )  u.  ran  V ) ) )
74 assarng 16335 . . . . . . . . . . . . . 14  |-  ( ( I mPwSer  R )  e. AssAlg  ->  ( I mPwSer  R )  e.  Ring )
7553subrgmre 15847 . . . . . . . . . . . . . 14  |-  ( ( I mPwSer  R )  e. 
Ring  ->  (SubRing `  ( I mPwSer  R ) )  e.  (Moore `  ( Base `  (
I mPwSer  R ) ) ) )
7652, 74, 753syl 19 . . . . . . . . . . . . 13  |-  ( ph  ->  (SubRing `  ( I mPwSer  R ) )  e.  (Moore `  ( Base `  (
I mPwSer  R ) ) ) )
77 frn 5556 . . . . . . . . . . . . . . . 16  |-  ( A : ( Base `  (Scalar `  P ) ) --> (
Base `  P )  ->  ran  A  C_  ( Base `  P ) )
7833, 77syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  A  C_  ( Base `  P ) )
7971, 78eqsstr3d 3343 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  (algSc `  (
I mPwSer  R ) )  C_  ( Base `  P )
)
80 frn 5556 . . . . . . . . . . . . . . 15  |-  ( V : I --> ( Base `  P )  ->  ran  V 
C_  ( Base `  P
) )
8138, 80syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  V  C_  ( Base `  P ) )
8279, 81unssd 3483 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ran  (algSc `  ( I mPwSer  R ) )  u.  ran  V ) 
C_  ( Base `  P
) )
83 eqid 2404 . . . . . . . . . . . . . 14  |-  (mrCls `  ( (SubRing `  ( I mPwSer  R ) )  i^i  ~P ( Base `  P )
) )  =  (mrCls `  ( (SubRing `  (
I mPwSer  R ) )  i^i 
~P ( Base `  P
) ) )
8459, 83submrc 13808 . . . . . . . . . . . . 13  |-  ( ( (SubRing `  ( I mPwSer  R ) )  e.  (Moore `  ( Base `  (
I mPwSer  R ) ) )  /\  ( Base `  P
)  e.  (SubRing `  (
I mPwSer  R ) )  /\  ( ran  (algSc `  (
I mPwSer  R ) )  u. 
ran  V )  C_  ( Base `  P )
)  ->  ( (mrCls `  ( (SubRing `  (
I mPwSer  R ) )  i^i 
~P ( Base `  P
) ) ) `  ( ran  (algSc `  (
I mPwSer  R ) )  u. 
ran  V ) )  =  ( (mrCls `  (SubRing `  ( I mPwSer  R
) ) ) `  ( ran  (algSc `  (
I mPwSer  R ) )  u. 
ran  V ) ) )
8576, 63, 82, 84syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  ( (mrCls `  (
(SubRing `  ( I mPwSer  R
) )  i^i  ~P ( Base `  P )
) ) `  ( ran  (algSc `  ( I mPwSer  R ) )  u.  ran  V ) )  =  ( (mrCls `  (SubRing `  (
I mPwSer  R ) ) ) `
 ( ran  (algSc `  ( I mPwSer  R ) )  u.  ran  V
) ) )
8673, 85eqtr2d 2437 . . . . . . . . . . 11  |-  ( ph  ->  ( (mrCls `  (SubRing `  ( I mPwSer  R ) ) ) `  ( ran  (algSc `  ( I mPwSer  R ) )  u.  ran  V ) )  =  ( (mrCls `  (SubRing `  P
) ) `  ( ran  A  u.  ran  V
) ) )
8761, 62, 863eqtr3d 2444 . . . . . . . . . 10  |-  ( ph  ->  ( Base `  P
)  =  ( (mrCls `  (SubRing `  P )
) `  ( ran  A  u.  ran  V ) ) )
8887ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S )
) )  /\  ( ran  A  u.  ran  V
)  C_  dom  ( m  i^i  n ) )  ->  ( Base `  P
)  =  ( (mrCls `  (SubRing `  P )
) `  ( ran  A  u.  ran  V ) ) )
8911, 27, 29syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  Ring )
902subrgmre 15847 . . . . . . . . . . . 12  |-  ( P  e.  Ring  ->  (SubRing `  P
)  e.  (Moore `  ( Base `  P )
) )
9189, 90syl 16 . . . . . . . . . . 11  |-  ( ph  ->  (SubRing `  P )  e.  (Moore `  ( Base `  P ) ) )
9291ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S )
) )  /\  ( ran  A  u.  ran  V
)  C_  dom  ( m  i^i  n ) )  ->  (SubRing `  P )  e.  (Moore `  ( Base `  P ) ) )
93 simpr 448 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S )
) )  /\  ( ran  A  u.  ran  V
)  C_  dom  ( m  i^i  n ) )  ->  ( ran  A  u.  ran  V )  C_  dom  ( m  i^i  n
) )
94 rhmeql 15853 . . . . . . . . . . 11  |-  ( ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S )
)  ->  dom  ( m  i^i  n )  e.  (SubRing `  P )
)
9594ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S )
) )  /\  ( ran  A  u.  ran  V
)  C_  dom  ( m  i^i  n ) )  ->  dom  ( m  i^i  n )  e.  (SubRing `  P ) )
96 eqid 2404 . . . . . . . . . . 11  |-  (mrCls `  (SubRing `  P ) )  =  (mrCls `  (SubRing `  P ) )
9796mrcsscl 13800 . . . . . . . . . 10  |-  ( ( (SubRing `  P )  e.  (Moore `  ( Base `  P ) )  /\  ( ran  A  u.  ran  V )  C_  dom  ( m  i^i  n )  /\  dom  ( m  i^i  n
)  e.  (SubRing `  P
) )  ->  (
(mrCls `  (SubRing `  P
) ) `  ( ran  A  u.  ran  V
) )  C_  dom  ( m  i^i  n
) )
9892, 93, 95, 97syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S )
) )  /\  ( ran  A  u.  ran  V
)  C_  dom  ( m  i^i  n ) )  ->  ( (mrCls `  (SubRing `  P ) ) `
 ( ran  A  u.  ran  V ) ) 
C_  dom  ( m  i^i  n ) )
9988, 98eqsstrd 3342 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S )
) )  /\  ( ran  A  u.  ran  V
)  C_  dom  ( m  i^i  n ) )  ->  ( Base `  P
)  C_  dom  ( m  i^i  n ) )
10099ex 424 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ( ( ran 
A  u.  ran  V
)  C_  dom  ( m  i^i  n )  -> 
( Base `  P )  C_ 
dom  ( m  i^i  n ) ) )
101 simprl 733 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  m  e.  ( P RingHom  S ) )
1022, 3rhmf 15782 . . . . . . . . 9  |-  ( m  e.  ( P RingHom  S
)  ->  m :
( Base `  P ) --> C )
103 ffn 5550 . . . . . . . . 9  |-  ( m : ( Base `  P
) --> C  ->  m  Fn  ( Base `  P
) )
104101, 102, 1033syl 19 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  m  Fn  ( Base `  P ) )
105 simprr 734 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  n  e.  ( P RingHom  S ) )
1062, 3rhmf 15782 . . . . . . . . 9  |-  ( n  e.  ( P RingHom  S
)  ->  n :
( Base `  P ) --> C )
107 ffn 5550 . . . . . . . . 9  |-  ( n : ( Base `  P
) --> C  ->  n  Fn  ( Base `  P
) )
108105, 106, 1073syl 19 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  n  Fn  ( Base `  P ) )
10978adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ran  A  C_  ( Base `  P ) )
11081adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ran  V  C_  ( Base `  P ) )
111109, 110unssd 3483 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ( ran  A  u.  ran  V )  C_  ( Base `  P )
)
112 fnreseql 5799 . . . . . . . 8  |-  ( ( m  Fn  ( Base `  P )  /\  n  Fn  ( Base `  P
)  /\  ( ran  A  u.  ran  V ) 
C_  ( Base `  P
) )  ->  (
( m  |`  ( ran  A  u.  ran  V
) )  =  ( n  |`  ( ran  A  u.  ran  V ) )  <->  ( ran  A  u.  ran  V )  C_  dom  ( m  i^i  n
) ) )
113104, 108, 111, 112syl3anc 1184 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ( ( m  |`  ( ran  A  u.  ran  V ) )  =  ( n  |`  ( ran  A  u.  ran  V
) )  <->  ( ran  A  u.  ran  V ) 
C_  dom  ( m  i^i  n ) ) )
114 fneqeql2 5798 . . . . . . . 8  |-  ( ( m  Fn  ( Base `  P )  /\  n  Fn  ( Base `  P
) )  ->  (
m  =  n  <->  ( Base `  P )  C_  dom  ( m  i^i  n
) ) )
115104, 108, 114syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ( m  =  n  <->  ( Base `  P
)  C_  dom  ( m  i^i  n ) ) )
116100, 113, 1153imtr4d 260 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ( ( m  |`  ( ran  A  u.  ran  V ) )  =  ( n  |`  ( ran  A  u.  ran  V
) )  ->  m  =  n ) )
11750, 116syl5 30 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( P RingHom  S )  /\  n  e.  ( P RingHom  S ) ) )  ->  ( ( ( m  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A
)  u.  ( G  o.  `' V ) )  /\  ( n  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) ) )  ->  m  =  n )
)
118117ralrimivva 2758 . . . 4  |-  ( ph  ->  A. m  e.  ( P RingHom  S ) A. n  e.  ( P RingHom  S )
( ( ( m  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) )  /\  (
n  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V ) ) )  ->  m  =  n ) )
119 reseq1 5099 . . . . . 6  |-  ( m  =  n  ->  (
m  |`  ( ran  A  u.  ran  V ) )  =  ( n  |`  ( ran  A  u.  ran  V ) ) )
120119eqeq1d 2412 . . . . 5  |-  ( m  =  n  ->  (
( m  |`  ( ran  A  u.  ran  V
) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) )  <->  ( n  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) ) ) )
121120rmo4 3087 . . . 4  |-  ( E* m  e.  ( P RingHom  S ) ( m  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) )  <->  A. m  e.  ( P RingHom  S ) A. n  e.  ( P RingHom  S ) ( ( ( m  |`  ( ran  A  u.  ran  V
) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) )  /\  (
n  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V ) ) )  ->  m  =  n ) )
122118, 121sylibr 204 . . 3  |-  ( ph  ->  E* m  e.  ( P RingHom  S ) ( m  |`  ( ran  A  u.  ran  V ) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) ) )
123 rmoim 3093 . . 3  |-  ( A. m  e.  ( P RingHom  S ) ( ( ( m  o.  A )  =  F  /\  (
m  o.  V )  =  G )  -> 
( m  |`  ( ran  A  u.  ran  V
) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) ) )  -> 
( E* m  e.  ( P RingHom  S )
( m  |`  ( ran  A  u.  ran  V
) )  =  ( ( F  o.  `' A )  u.  ( G  o.  `' V
) )  ->  E* m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  ( m  o.  V )  =  G ) ) )
12449, 122, 123sylc 58 . 2  |-  ( ph  ->  E* m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  (
m  o.  V )  =  G ) )
125 reu5 2881 . 2  |-  ( E! m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  (
m  o.  V )  =  G )  <->  ( E. m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  ( m  o.  V )  =  G )  /\  E* m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  ( m  o.  V )  =  G ) ) )
12625, 124, 125sylanbrc 646 1  |-  ( ph  ->  E! m  e.  ( P RingHom  S ) ( ( m  o.  A )  =  F  /\  (
m  o.  V )  =  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   E!wreu 2668   E*wrmo 2669   {crab 2670   _Vcvv 2916    u. cun 3278    i^i cin 3279    C_ wss 3280   ~Pcpw 3759    e. cmpt 4226   `'ccnv 4836   dom cdm 4837   ran crn 4838    |` cres 4839   "cima 4840    o. ccom 4841   Fun wfun 5407    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    o Fcof 6262    ^m cmap 6977   Fincfn 7068   NNcn 9956   NN0cn0 10177   Basecbs 13424   .rcmulr 13485  Scalarcsca 13487    gsumg cgsu 13679  Moorecmre 13762  mrClscmrc 13763  .gcmg 14644  mulGrpcmgp 15603   Ringcrg 15615   CRingccrg 15616   RingHom crh 15772  SubRingcsubrg 15819  AssAlgcasa 16324  AlgSpancasp 16325  algSccascl 16326   mPwSer cmps 16361   mVar cmvr 16362   mPoly cmpl 16363
This theorem is referenced by:  evlsval2  19894
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-ofr 6265  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-fzo 11091  df-seq 11279  df-hash 11574  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-0g 13682  df-gsum 13683  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-mhm 14693  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mulg 14770  df-subg 14896  df-ghm 14959  df-cntz 15071  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-cring 15619  df-ur 15620  df-rnghom 15774  df-subrg 15821  df-lmod 15907  df-lss 15964  df-lsp 16003  df-assa 16327  df-asp 16328  df-ascl 16329  df-psr 16372  df-mvr 16373  df-mpl 16374
  Copyright terms: Public domain W3C validator