MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlsval2 Structured version   Unicode version

Theorem evlsval2 19933
Description: Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015.)
Hypotheses
Ref Expression
evlsval.q  |-  Q  =  ( ( I evalSub  S
) `  R )
evlsval.w  |-  W  =  ( I mPoly  U )
evlsval.v  |-  V  =  ( I mVar  U )
evlsval.u  |-  U  =  ( Ss  R )
evlsval.t  |-  T  =  ( S  ^s  ( B  ^m  I ) )
evlsval.b  |-  B  =  ( Base `  S
)
evlsval.a  |-  A  =  (algSc `  W )
evlsval.x  |-  X  =  ( x  e.  R  |->  ( ( B  ^m  I )  X.  {
x } ) )
evlsval.y  |-  Y  =  ( x  e.  I  |->  ( g  e.  ( B  ^m  I ) 
|->  ( g `  x
) ) )
Assertion
Ref Expression
evlsval2  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( Q  e.  ( W RingHom  T )  /\  ( ( Q  o.  A )  =  X  /\  ( Q  o.  V )  =  Y ) ) )
Distinct variable groups:    g, I, x    x, R    S, g, x    B, g, x    R, g    x, T
Allowed substitution hints:    A( x, g)    Q( x, g)    T( g)    U( x, g)    V( x, g)    W( x, g)    X( x, g)    Y( x, g)

Proof of Theorem evlsval2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 evlsval.q . . . 4  |-  Q  =  ( ( I evalSub  S
) `  R )
2 evlsval.w . . . 4  |-  W  =  ( I mPoly  U )
3 evlsval.v . . . 4  |-  V  =  ( I mVar  U )
4 evlsval.u . . . 4  |-  U  =  ( Ss  R )
5 evlsval.t . . . 4  |-  T  =  ( S  ^s  ( B  ^m  I ) )
6 evlsval.b . . . 4  |-  B  =  ( Base `  S
)
7 evlsval.a . . . 4  |-  A  =  (algSc `  W )
8 evlsval.x . . . 4  |-  X  =  ( x  e.  R  |->  ( ( B  ^m  I )  X.  {
x } ) )
9 evlsval.y . . . 4  |-  Y  =  ( x  e.  I  |->  ( g  e.  ( B  ^m  I ) 
|->  ( g `  x
) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9evlsval 19932 . . 3  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  Q  =  ( iota_ m  e.  ( W RingHom  T ) ( ( m  o.  A )  =  X  /\  (
m  o.  V )  =  Y ) ) )
11 eqid 2435 . . . . 5  |-  ( Base `  T )  =  (
Base `  T )
12 simp1 957 . . . . 5  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  I  e.  _V )
134subrgcrng 15864 . . . . . 6  |-  ( ( S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  U  e.  CRing
)
14133adant1 975 . . . . 5  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  U  e.  CRing
)
15 simp2 958 . . . . . 6  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  S  e.  CRing
)
16 ovex 6098 . . . . . 6  |-  ( B  ^m  I )  e. 
_V
175pwscrng 15715 . . . . . 6  |-  ( ( S  e.  CRing  /\  ( B  ^m  I )  e. 
_V )  ->  T  e.  CRing )
1815, 16, 17sylancl 644 . . . . 5  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  T  e.  CRing
)
196subrgss 15861 . . . . . . . . 9  |-  ( R  e.  (SubRing `  S
)  ->  R  C_  B
)
20193ad2ant3 980 . . . . . . . 8  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  R  C_  B
)
21 resmpt 5183 . . . . . . . 8  |-  ( R 
C_  B  ->  (
( x  e.  B  |->  ( ( B  ^m  I )  X.  {
x } ) )  |`  R )  =  ( x  e.  R  |->  ( ( B  ^m  I
)  X.  { x } ) ) )
2220, 21syl 16 . . . . . . 7  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( (
x  e.  B  |->  ( ( B  ^m  I
)  X.  { x } ) )  |`  R )  =  ( x  e.  R  |->  ( ( B  ^m  I
)  X.  { x } ) ) )
2322, 8syl6eqr 2485 . . . . . 6  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( (
x  e.  B  |->  ( ( B  ^m  I
)  X.  { x } ) )  |`  R )  =  X )
24 crngrng 15666 . . . . . . . . 9  |-  ( S  e.  CRing  ->  S  e.  Ring )
25243ad2ant2 979 . . . . . . . 8  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  S  e.  Ring )
26 eqid 2435 . . . . . . . . 9  |-  ( x  e.  B  |->  ( ( B  ^m  I )  X.  { x }
) )  =  ( x  e.  B  |->  ( ( B  ^m  I
)  X.  { x } ) )
275, 6, 26pwsdiagrhm 15893 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  ( B  ^m  I )  e. 
_V )  ->  (
x  e.  B  |->  ( ( B  ^m  I
)  X.  { x } ) )  e.  ( S RingHom  T )
)
2825, 16, 27sylancl 644 . . . . . . 7  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( x  e.  B  |->  ( ( B  ^m  I )  X.  { x }
) )  e.  ( S RingHom  T ) )
29 simp3 959 . . . . . . 7  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  R  e.  (SubRing `  S ) )
304resrhm 15889 . . . . . . 7  |-  ( ( ( x  e.  B  |->  ( ( B  ^m  I )  X.  {
x } ) )  e.  ( S RingHom  T
)  /\  R  e.  (SubRing `  S ) )  ->  ( ( x  e.  B  |->  ( ( B  ^m  I )  X.  { x }
) )  |`  R )  e.  ( U RingHom  T
) )
3128, 29, 30syl2anc 643 . . . . . 6  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( (
x  e.  B  |->  ( ( B  ^m  I
)  X.  { x } ) )  |`  R )  e.  ( U RingHom  T ) )
3223, 31eqeltrrd 2510 . . . . 5  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  X  e.  ( U RingHom  T ) )
33 fvex 5734 . . . . . . . . . . . 12  |-  ( Base `  S )  e.  _V
346, 33eqeltri 2505 . . . . . . . . . . 11  |-  B  e. 
_V
35 simpl1 960 . . . . . . . . . . 11  |-  ( ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  /\  x  e.  I )  ->  I  e.  _V )
36 elmapg 7023 . . . . . . . . . . 11  |-  ( ( B  e.  _V  /\  I  e.  _V )  ->  ( g  e.  ( B  ^m  I )  <-> 
g : I --> B ) )
3734, 35, 36sylancr 645 . . . . . . . . . 10  |-  ( ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  /\  x  e.  I )  ->  (
g  e.  ( B  ^m  I )  <->  g :
I --> B ) )
3837biimpa 471 . . . . . . . . 9  |-  ( ( ( ( I  e. 
_V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S ) )  /\  x  e.  I )  /\  g  e.  ( B  ^m  I ) )  ->  g : I --> B )
39 simplr 732 . . . . . . . . 9  |-  ( ( ( ( I  e. 
_V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S ) )  /\  x  e.  I )  /\  g  e.  ( B  ^m  I ) )  ->  x  e.  I
)
4038, 39ffvelrnd 5863 . . . . . . . 8  |-  ( ( ( ( I  e. 
_V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S ) )  /\  x  e.  I )  /\  g  e.  ( B  ^m  I ) )  ->  ( g `  x )  e.  B
)
41 eqid 2435 . . . . . . . 8  |-  ( g  e.  ( B  ^m  I )  |->  ( g `
 x ) )  =  ( g  e.  ( B  ^m  I
)  |->  ( g `  x ) )
4240, 41fmptd 5885 . . . . . . 7  |-  ( ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  /\  x  e.  I )  ->  (
g  e.  ( B  ^m  I )  |->  ( g `  x ) ) : ( B  ^m  I ) --> B )
43 simpl2 961 . . . . . . . 8  |-  ( ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  /\  x  e.  I )  ->  S  e.  CRing )
445, 6, 11pwselbasb 13702 . . . . . . . 8  |-  ( ( S  e.  CRing  /\  ( B  ^m  I )  e. 
_V )  ->  (
( g  e.  ( B  ^m  I ) 
|->  ( g `  x
) )  e.  (
Base `  T )  <->  ( g  e.  ( B  ^m  I )  |->  ( g `  x ) ) : ( B  ^m  I ) --> B ) )
4543, 16, 44sylancl 644 . . . . . . 7  |-  ( ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  /\  x  e.  I )  ->  (
( g  e.  ( B  ^m  I ) 
|->  ( g `  x
) )  e.  (
Base `  T )  <->  ( g  e.  ( B  ^m  I )  |->  ( g `  x ) ) : ( B  ^m  I ) --> B ) )
4642, 45mpbird 224 . . . . . 6  |-  ( ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  /\  x  e.  I )  ->  (
g  e.  ( B  ^m  I )  |->  ( g `  x ) )  e.  ( Base `  T ) )
4746, 9fmptd 5885 . . . . 5  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  Y :
I --> ( Base `  T
) )
482, 11, 7, 3, 12, 14, 18, 32, 47evlseu 19929 . . . 4  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  E! m  e.  ( W RingHom  T )
( ( m  o.  A )  =  X  /\  ( m  o.  V )  =  Y ) )
49 riotacl2 6555 . . . 4  |-  ( E! m  e.  ( W RingHom  T ) ( ( m  o.  A )  =  X  /\  (
m  o.  V )  =  Y )  -> 
( iota_ m  e.  ( W RingHom  T ) ( ( m  o.  A )  =  X  /\  (
m  o.  V )  =  Y ) )  e.  { m  e.  ( W RingHom  T )  |  ( ( m  o.  A )  =  X  /\  ( m  o.  V )  =  Y ) } )
5048, 49syl 16 . . 3  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( iota_ m  e.  ( W RingHom  T
) ( ( m  o.  A )  =  X  /\  ( m  o.  V )  =  Y ) )  e. 
{ m  e.  ( W RingHom  T )  |  ( ( m  o.  A
)  =  X  /\  ( m  o.  V
)  =  Y ) } )
5110, 50eqeltrd 2509 . 2  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  Q  e.  { m  e.  ( W RingHom  T )  |  ( ( m  o.  A
)  =  X  /\  ( m  o.  V
)  =  Y ) } )
52 coeq1 5022 . . . . 5  |-  ( m  =  Q  ->  (
m  o.  A )  =  ( Q  o.  A ) )
5352eqeq1d 2443 . . . 4  |-  ( m  =  Q  ->  (
( m  o.  A
)  =  X  <->  ( Q  o.  A )  =  X ) )
54 coeq1 5022 . . . . 5  |-  ( m  =  Q  ->  (
m  o.  V )  =  ( Q  o.  V ) )
5554eqeq1d 2443 . . . 4  |-  ( m  =  Q  ->  (
( m  o.  V
)  =  Y  <->  ( Q  o.  V )  =  Y ) )
5653, 55anbi12d 692 . . 3  |-  ( m  =  Q  ->  (
( ( m  o.  A )  =  X  /\  ( m  o.  V )  =  Y )  <->  ( ( Q  o.  A )  =  X  /\  ( Q  o.  V )  =  Y ) ) )
5756elrab 3084 . 2  |-  ( Q  e.  { m  e.  ( W RingHom  T )  |  ( ( m  o.  A )  =  X  /\  ( m  o.  V )  =  Y ) }  <->  ( Q  e.  ( W RingHom  T )  /\  ( ( Q  o.  A )  =  X  /\  ( Q  o.  V )  =  Y ) ) )
5851, 57sylib 189 1  |-  ( ( I  e.  _V  /\  S  e.  CRing  /\  R  e.  (SubRing `  S )
)  ->  ( Q  e.  ( W RingHom  T )  /\  ( ( Q  o.  A )  =  X  /\  ( Q  o.  V )  =  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E!wreu 2699   {crab 2701   _Vcvv 2948    C_ wss 3312   {csn 3806    e. cmpt 4258    X. cxp 4868    |` cres 4872    o. ccom 4874   -->wf 5442   ` cfv 5446  (class class class)co 6073   iota_crio 6534    ^m cmap 7010   Basecbs 13461   ↾s cress 13462    ^s cpws 13662   Ringcrg 15652   CRingccrg 15653   RingHom crh 15809  SubRingcsubrg 15856  algSccascl 16363   mVar cmvr 16399   mPoly cmpl 16400   evalSub ces 16401
This theorem is referenced by:  evlsrhm  19934  evlssca  19935  evlsvar  19936
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-ofr 6298  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-fz 11036  df-fzo 11128  df-seq 11316  df-hash 11611  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-hom 13545  df-cco 13546  df-prds 13663  df-pws 13665  df-0g 13719  df-gsum 13720  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-mhm 14730  df-submnd 14731  df-grp 14804  df-minusg 14805  df-sbg 14806  df-mulg 14807  df-subg 14933  df-ghm 14996  df-cntz 15108  df-cmn 15406  df-abl 15407  df-mgp 15641  df-rng 15655  df-cring 15656  df-ur 15657  df-rnghom 15811  df-subrg 15858  df-lmod 15944  df-lss 16001  df-lsp 16040  df-assa 16364  df-asp 16365  df-ascl 16366  df-psr 16409  df-mvr 16410  df-mpl 16411  df-evls 16412
  Copyright terms: Public domain W3C validator