Mathbox for Frédéric Liné < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evpexun Unicode version

Theorem evpexun 25101
 Description: Eventually expressed with the operator. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Mario Carneiro, 30-Aug-2016.)
Assertion
Ref Expression
evpexun

Proof of Theorem evpexun
StepHypRef Expression
1 trcrm 25054 . . . . . . 7
21biimpri 197 . . . . . 6
32olcd 382 . . . . 5
4 ax-ltl5 25096 . . . . 5
53, 4sylibr 203 . . . 4
65ax-lmp 25081 . . 3
7 orc 374 . . . . . . . 8
87, 4sylibr 203 . . . . . . 7
98con3i 127 . . . . . 6
109impbox 25084 . . . . 5
11 notev 25093 . . . . 5
12 notev 25093 . . . . 5
1310, 11, 123imtr4i 257 . . . 4
1413con4i 122 . . 3
15 ltl4ev 25095 . . 3
166, 14, 15sylancr 644 . 2
17 ax-ltl6 25097 . 2
1816, 17impbii 180 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 176   wo 357   wa 358   wtru 1307  wbox 25073  wdia 25074  wcirc 25075   wunt 25076 This theorem is referenced by:  albineal  25102 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-ltl1 25077  ax-ltl2 25078  ax-ltl4 25080  ax-lmp 25081  ax-ltl5 25096  ax-ltl6 25097 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-dia 25083
 Copyright terms: Public domain W3C validator