MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evth Unicode version

Theorem evth 18856
Description: The Extreme Value Theorem. A continuous function from a nonempty compact topological space to the reals attains its maximum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1  |-  X  = 
U. J
bndth.2  |-  K  =  ( topGen `  ran  (,) )
bndth.3  |-  ( ph  ->  J  e.  Comp )
bndth.4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
evth.5  |-  ( ph  ->  X  =/=  (/) )
Assertion
Ref Expression
evth  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( F `  y )  <_  ( F `  x ) )
Distinct variable groups:    x, y, F    y, K    ph, x, y   
x, X, y    x, J, y
Allowed substitution hint:    K( x)

Proof of Theorem evth
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bndth.1 . . . . 5  |-  X  = 
U. J
2 bndth.2 . . . . 5  |-  K  =  ( topGen `  ran  (,) )
3 bndth.3 . . . . . 6  |-  ( ph  ->  J  e.  Comp )
43adantr 452 . . . . 5  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  J  e.  Comp )
5 cmptop 17381 . . . . . . . . . 10  |-  ( J  e.  Comp  ->  J  e. 
Top )
64, 5syl 16 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  J  e.  Top )
71toptopon 16922 . . . . . . . . 9  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
86, 7sylib 189 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  J  e.  (TopOn `  X )
)
9 eqid 2388 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
109cnfldtopon 18689 . . . . . . . . . 10  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
1110a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )
12 ax-1cn 8982 . . . . . . . . . 10  |-  1  e.  CC
1312a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  1  e.  CC )
148, 11, 13cnmptc 17616 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  1 )  e.  ( J  Cn  ( TopOpen ` fld ) ) )
15 bndth.4 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
16 uniretop 18668 . . . . . . . . . . . . . . . . . . 19  |-  RR  =  U. ( topGen `  ran  (,) )
172unieqi 3968 . . . . . . . . . . . . . . . . . . 19  |-  U. K  =  U. ( topGen `  ran  (,) )
1816, 17eqtr4i 2411 . . . . . . . . . . . . . . . . . 18  |-  RR  =  U. K
191, 18cnf 17233 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> RR )
2015, 19syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : X --> RR )
21 frn 5538 . . . . . . . . . . . . . . . 16  |-  ( F : X --> RR  ->  ran 
F  C_  RR )
2220, 21syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  F  C_  RR )
23 fdm 5536 . . . . . . . . . . . . . . . . . 18  |-  ( F : X --> RR  ->  dom 
F  =  X )
2420, 23syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  F  =  X )
25 evth.5 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  =/=  (/) )
2624, 25eqnetrd 2569 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  F  =/=  (/) )
27 dm0rn0 5027 . . . . . . . . . . . . . . . . 17  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
2827necon3bii 2583 . . . . . . . . . . . . . . . 16  |-  ( dom 
F  =/=  (/)  <->  ran  F  =/=  (/) )
2926, 28sylib 189 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  F  =/=  (/) )
301, 2, 3, 15bndth 18855 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  E. x  e.  RR  A. y  e.  X  ( F `  y )  <_  x )
31 ffn 5532 . . . . . . . . . . . . . . . . . . 19  |-  ( F : X --> RR  ->  F  Fn  X )
3220, 31syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  Fn  X )
33 breq1 4157 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( F `  y )  ->  (
z  <_  x  <->  ( F `  y )  <_  x
) )
3433ralrn 5813 . . . . . . . . . . . . . . . . . 18  |-  ( F  Fn  X  ->  ( A. z  e.  ran  F  z  <_  x  <->  A. y  e.  X  ( F `  y )  <_  x
) )
3532, 34syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A. z  e. 
ran  F  z  <_  x  <->  A. y  e.  X  ( F `  y )  <_  x ) )
3635rexbidv 2671 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( E. x  e.  RR  A. z  e. 
ran  F  z  <_  x  <->  E. x  e.  RR  A. y  e.  X  ( F `  y )  <_  x ) )
3730, 36mpbird 224 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E. x  e.  RR  A. z  e.  ran  F  z  <_  x )
3822, 29, 373jca 1134 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x ) )
39 suprcl 9901 . . . . . . . . . . . . . 14  |-  ( ( ran  F  C_  RR  /\ 
ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  F  z  <_  x )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
4038, 39syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
4140recnd 9048 . . . . . . . . . . . 12  |-  ( ph  ->  sup ( ran  F ,  RR ,  <  )  e.  CC )
4241adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  sup ( ran  F ,  RR ,  <  )  e.  CC )
438, 11, 42cnmptc 17616 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  sup ( ran  F ,  RR ,  <  ) )  e.  ( J  Cn  ( TopOpen ` fld ) ) )
4420feqmptd 5719 . . . . . . . . . . . 12  |-  ( ph  ->  F  =  ( z  e.  X  |->  ( F `
 z ) ) )
459cnfldtop 18690 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  Top
46 cnrest2r 17274 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( J  Cn  ( (
TopOpen ` fld )t  RR ) )  C_  ( J  Cn  ( TopOpen
` fld
) ) )
4745, 46ax-mp 8 . . . . . . . . . . . . 13  |-  ( J  Cn  ( ( TopOpen ` fld )t  RR ) )  C_  ( J  Cn  ( TopOpen ` fld ) )
489tgioo2 18706 . . . . . . . . . . . . . . . 16  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
492, 48eqtri 2408 . . . . . . . . . . . . . . 15  |-  K  =  ( ( TopOpen ` fld )t  RR )
5049oveq2i 6032 . . . . . . . . . . . . . 14  |-  ( J  Cn  K )  =  ( J  Cn  (
( TopOpen ` fld )t  RR ) )
5115, 50syl6eleq 2478 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( J  Cn  ( ( TopOpen ` fld )t  RR ) ) )
5247, 51sseldi 3290 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  ( J  Cn  ( TopOpen ` fld ) ) )
5344, 52eqeltrrd 2463 . . . . . . . . . . 11  |-  ( ph  ->  ( z  e.  X  |->  ( F `  z
) )  e.  ( J  Cn  ( TopOpen ` fld )
) )
5453adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( F `  z ) )  e.  ( J  Cn  ( TopOpen ` fld ) ) )
559subcn 18768 . . . . . . . . . . 11  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
5655a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
578, 43, 54, 56cnmpt12f 17620 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  ( J  Cn  ( TopOpen ` fld ) ) )
5840ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
59 ffvelrn 5808 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  /\  z  e.  X )  ->  ( F `  z
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) )
6059adantll 695 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( F `  z
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) )
61 eldifsn 3871 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  z )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( ( F `  z )  e.  RR  /\  ( F `
 z )  =/= 
sup ( ran  F ,  RR ,  <  )
) )
6260, 61sylib 189 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( ( F `  z )  e.  RR  /\  ( F `  z
)  =/=  sup ( ran  F ,  RR ,  <  ) ) )
6362simpld 446 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( F `  z
)  e.  RR )
6458, 63resubcld 9398 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) )  e.  RR )
6564recnd 9048 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) )  e.  CC )
6658recnd 9048 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  sup ( ran  F ,  RR ,  <  )  e.  CC )
6763recnd 9048 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( F `  z
)  e.  CC )
6862simprd 450 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( F `  z
)  =/=  sup ( ran  F ,  RR ,  <  ) )
6968necomd 2634 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  sup ( ran  F ,  RR ,  <  )  =/=  ( F `  z
) )
7066, 67, 69subne0d 9353 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) )  =/=  0 )
71 eldifsn 3871 . . . . . . . . . . . . 13  |-  ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) )  e.  ( CC  \  {
0 } )  <->  ( ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) )  e.  CC  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) )  =/=  0 ) )
7265, 70, 71sylanbrc 646 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) )  e.  ( CC  \  { 0 } ) )
73 eqid 2388 . . . . . . . . . . . 12  |-  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  =  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )
7472, 73fmptd 5833 . . . . . . . . . . 11  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) : X --> ( CC 
\  { 0 } ) )
75 frn 5538 . . . . . . . . . . 11  |-  ( ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) : X --> ( CC 
\  { 0 } )  ->  ran  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  C_  ( CC  \  { 0 } ) )
7674, 75syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  ran  ( z  e.  X  |->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) )  C_  ( CC  \  { 0 } ) )
77 difssd 3419 . . . . . . . . . 10  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  ( CC  \  { 0 } )  C_  CC )
78 cnrest2 17273 . . . . . . . . . 10  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( z  e.  X  |->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) )  C_  ( CC  \  { 0 } )  /\  ( CC  \  { 0 } ) 
C_  CC )  -> 
( ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) )  e.  ( J  Cn  ( TopOpen ` fld ) )  <->  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  ( J  Cn  ( (
TopOpen ` fld )t  ( CC  \  {
0 } ) ) ) ) )
7911, 76, 77, 78syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
( z  e.  X  |->  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) )  e.  ( J  Cn  ( TopOpen ` fld ) )  <->  ( z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  ( J  Cn  ( (
TopOpen ` fld )t  ( CC  \  {
0 } ) ) ) ) )
8057, 79mpbid 202 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  ( J  Cn  ( ( TopOpen ` fld )t  ( CC  \  { 0 } ) ) ) )
81 eqid 2388 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  ( CC  \  {
0 } ) )  =  ( ( TopOpen ` fld )t  ( CC  \  { 0 } ) )
829, 81divcn 18770 . . . . . . . . 9  |-  /  e.  ( ( ( TopOpen ` fld )  tX  ( ( TopOpen ` fld )t  ( CC  \  { 0 } ) ) )  Cn  ( TopOpen
` fld
) )
8382a1i 11 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  /  e.  ( ( ( TopOpen ` fld )  tX  ( ( TopOpen ` fld )t  ( CC  \  { 0 } ) ) )  Cn  ( TopOpen
` fld
) ) )
848, 14, 80, 83cnmpt12f 17620 . . . . . . 7  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  e.  ( J  Cn  ( TopOpen
` fld
) ) )
8564, 70rereccld 9774 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  z  e.  X )  ->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  e.  RR )
86 eqid 2388 . . . . . . . . . 10  |-  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) )  =  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )
8785, 86fmptd 5833 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) : X --> RR )
88 frn 5538 . . . . . . . . 9  |-  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) : X --> RR  ->  ran  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  C_  RR )
8987, 88syl 16 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  ran  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  C_  RR )
90 ax-resscn 8981 . . . . . . . . 9  |-  RR  C_  CC
9190a1i 11 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  RR  C_  CC )
92 cnrest2 17273 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  C_  RR  /\  RR  C_  CC )  ->  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) )  e.  ( J  Cn  ( TopOpen ` fld )
)  <->  ( z  e.  X  |->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) ) )  e.  ( J  Cn  ( (
TopOpen ` fld )t  RR ) ) ) )
9311, 89, 91, 92syl3anc 1184 . . . . . . 7  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  e.  ( J  Cn  ( TopOpen
` fld
) )  <->  ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) )  e.  ( J  Cn  ( (
TopOpen ` fld )t  RR ) ) ) )
9484, 93mpbid 202 . . . . . 6  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  e.  ( J  Cn  (
( TopOpen ` fld )t  RR ) ) )
9594, 50syl6eleqr 2479 . . . . 5  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  (
z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) )  e.  ( J  Cn  K
) )
961, 2, 4, 95bndth 18855 . . . 4  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  E. x  e.  RR  A. y  e.  X  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x )
9740ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
98 simpr 448 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  x  e.  RR )
99 1re 9024 . . . . . . . . . . 11  |-  1  e.  RR
100 ifcl 3719 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_  x ,  x , 
1 )  e.  RR )
10198, 99, 100sylancl 644 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  if ( 1  <_  x ,  x , 
1 )  e.  RR )
102 0re 9025 . . . . . . . . . . . . 13  |-  0  e.  RR
103102a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  0  e.  RR )
10499a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  1  e.  RR )
105 0lt1 9483 . . . . . . . . . . . . 13  |-  0  <  1
106105a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  0  <  1 )
107 max1 10706 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR  /\  x  e.  RR )  ->  1  <_  if (
1  <_  x ,  x ,  1 ) )
10899, 98, 107sylancr 645 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  1  <_  if (
1  <_  x ,  x ,  1 ) )
109103, 104, 101, 106, 108ltletrd 9163 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  0  <  if ( 1  <_  x ,  x ,  1 ) )
110109gt0ne0d 9524 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  if ( 1  <_  x ,  x , 
1 )  =/=  0
)
111101, 110rereccld 9774 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR )
112101, 109recgt0d 9878 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  0  <  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )
113111, 112elrpd 10579 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR+ )
11497, 113ltsubrpd 10609 . . . . . . 7  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <  sup ( ran  F ,  RR ,  <  ) )
11597, 111resubcld 9398 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  e.  RR )
116115, 97ltnled 9153 . . . . . . 7  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <  sup ( ran  F ,  RR ,  <  )  <->  -.  sup ( ran  F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
117114, 116mpbid 202 . . . . . 6  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  -.  sup ( ran 
F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) ) )
118 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  x  e.  RR )
119 max2 10708 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  x  e.  RR )  ->  x  <_  if (
1  <_  x ,  x ,  1 ) )
12099, 118, 119sylancr 645 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  x  <_  if ( 1  <_  x ,  x ,  1 ) )
12140ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
122 ffvelrn 5808 . . . . . . . . . . . . . . . . 17  |-  ( ( F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  /\  y  e.  X )  ->  ( F `  y
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) )
123122ad2ant2l 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )
124 eldifsn 3871 . . . . . . . . . . . . . . . 16  |-  ( ( F `  y )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( ( F `  y )  e.  RR  /\  ( F `
 y )  =/= 
sup ( ran  F ,  RR ,  <  )
) )
125123, 124sylib 189 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( ( F `  y )  e.  RR  /\  ( F `
 y )  =/= 
sup ( ran  F ,  RR ,  <  )
) )
126125simpld 446 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  e.  RR )
127121, 126resubcld 9398 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  e.  RR )
12838adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  X )  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x ) )
129 fnfvelrn 5807 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  Fn  X  /\  y  e.  X )  ->  ( F `  y
)  e.  ran  F
)
13032, 129sylan 458 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  X )  ->  ( F `  y )  e.  ran  F )
131 suprub 9902 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x )  /\  ( F `
 y )  e. 
ran  F )  -> 
( F `  y
)  <_  sup ( ran  F ,  RR ,  <  ) )
132128, 130, 131syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  X )  ->  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  )
)
133132ad2ant2rl 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  ) )
134125simprd 450 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  =/=  sup ( ran  F ,  RR ,  <  ) )
135134necomd 2634 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  sup ( ran  F ,  RR ,  <  )  =/=  ( F `
 y ) )
136126, 121ltlend 9151 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( ( F `  y )  <  sup ( ran  F ,  RR ,  <  )  <->  ( ( F `  y
)  <_  sup ( ran  F ,  RR ,  <  )  /\  sup ( ran  F ,  RR ,  <  )  =/=  ( F `
 y ) ) ) )
137133, 135, 136mpbir2and 889 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( F `  y )  <  sup ( ran  F ,  RR ,  <  ) )
138126, 121posdifd 9546 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( ( F `  y )  <  sup ( ran  F ,  RR ,  <  )  <->  0  <  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) ) )
139137, 138mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  0  <  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )
140139gt0ne0d 9524 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  =/=  0 )
141127, 140rereccld 9774 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  e.  RR )
142118, 99, 100sylancl 644 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  if (
1  <_  x ,  x ,  1 )  e.  RR )
143 letr 9101 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  e.  RR  /\  x  e.  RR  /\  if ( 1  <_  x ,  x ,  1 )  e.  RR )  -> 
( ( ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  x  /\  x  <_  if ( 1  <_  x ,  x ,  1 ) )  ->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  if (
1  <_  x ,  x ,  1 ) ) )
144141, 118, 142, 143syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  x  /\  x  <_  if ( 1  <_  x ,  x ,  1 ) )  ->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  if (
1  <_  x ,  x ,  1 ) ) )
145120, 144mpan2d 656 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  x  ->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  if ( 1  <_  x ,  x ,  1 ) ) )
146 fveq2 5669 . . . . . . . . . . . . . . 15  |-  ( z  =  y  ->  ( F `  z )  =  ( F `  y ) )
147146oveq2d 6037 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) )  =  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )
148147oveq2d 6037 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) )  =  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) ) )
149 ovex 6046 . . . . . . . . . . . . 13  |-  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  e.  _V
150148, 86, 149fvmpt 5746 . . . . . . . . . . . 12  |-  ( y  e.  X  ->  (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  =  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) ) )
151150breq1d 4164 . . . . . . . . . . 11  |-  ( y  e.  X  ->  (
( ( z  e.  X  |->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x  <->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  x )
)
152151ad2antll 710 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  <_  x  <->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  x
) )
153111adantrr 698 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR )
154109adantrr 698 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  0  <  if ( 1  <_  x ,  x ,  1 ) )
155142, 154recgt0d 9878 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  0  <  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )
156 lerec 9825 . . . . . . . . . . . 12  |-  ( ( ( ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR  /\  0  <  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  /\  (
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) )  e.  RR  /\  0  <  ( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) ) )  ->  (
( 1  /  if ( 1  <_  x ,  x ,  1 ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  <->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  ( 1  /  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
157153, 155, 127, 139, 156syl22anc 1185 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
1  /  if ( 1  <_  x ,  x ,  1 ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  <->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  ( 1  /  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
158 lesub 9440 . . . . . . . . . . . 12  |-  ( ( ( 1  /  if ( 1  <_  x ,  x ,  1 ) )  e.  RR  /\  sup ( ran  F ,  RR ,  <  )  e.  RR  /\  ( F `
 y )  e.  RR )  ->  (
( 1  /  if ( 1  <_  x ,  x ,  1 ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  <->  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
159153, 121, 126, 158syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
1  /  if ( 1  <_  x ,  x ,  1 ) )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y )
)  <->  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
160142recnd 9048 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  if (
1  <_  x ,  x ,  1 )  e.  CC )
161110adantrr 698 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  if (
1  <_  x ,  x ,  1 )  =/=  0 )
162160, 161recrecd 9720 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( 1  /  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  =  if ( 1  <_  x ,  x ,  1 ) )
163162breq2d 4166 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  y ) ) )  <_  (
1  /  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  if (
1  <_  x ,  x ,  1 ) ) )
164157, 159, 1633bitr3d 275 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( ( F `  y )  <_  ( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  ( 1  / 
( sup ( ran 
F ,  RR ,  <  )  -  ( F `
 y ) ) )  <_  if (
1  <_  x ,  x ,  1 ) ) )
165145, 152, 1643imtr4d 260 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  ( x  e.  RR  /\  y  e.  X ) )  ->  ( (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  <_  x  ->  ( F `  y
)  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
166165anassrs 630 . . . . . . . 8  |-  ( ( ( ( ph  /\  F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  /\  y  e.  X
)  ->  ( (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  <_  x  ->  ( F `  y
)  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
167166ralimdva 2728 . . . . . . 7  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( A. y  e.  X  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x  ->  A. y  e.  X  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
16838ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x ) )
169 suprleub 9905 . . . . . . . . 9  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  F  z  <_  x )  /\  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  e.  RR )  ->  ( sup ( ran  F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. z  e.  ran  F  z  <_ 
( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
170168, 115, 169syl2anc 643 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( sup ( ran 
F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. z  e.  ran  F  z  <_ 
( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
17132ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  F  Fn  X )
172 breq1 4157 . . . . . . . . . 10  |-  ( z  =  ( F `  y )  ->  (
z  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
173172ralrn 5813 . . . . . . . . 9  |-  ( F  Fn  X  ->  ( A. z  e.  ran  F  z  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. y  e.  X  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
174171, 173syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( A. z  e. 
ran  F  z  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. y  e.  X  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
175170, 174bitrd 245 . . . . . . 7  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( sup ( ran 
F ,  RR ,  <  )  <_  ( sup ( ran  F ,  RR ,  <  )  -  (
1  /  if ( 1  <_  x ,  x ,  1 ) ) )  <->  A. y  e.  X  ( F `  y )  <_  ( sup ( ran  F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
176167, 175sylibrd 226 . . . . . 6  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  ( A. y  e.  X  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x  ->  sup ( ran  F ,  RR ,  <  )  <_ 
( sup ( ran 
F ,  RR ,  <  )  -  ( 1  /  if ( 1  <_  x ,  x ,  1 ) ) ) ) )
177117, 176mtod 170 . . . . 5  |-  ( ( ( ph  /\  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  /\  x  e.  RR )  ->  -.  A. y  e.  X  ( ( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `
 z ) ) ) ) `  y
)  <_  x )
178177nrexdv 2753 . . . 4  |-  ( (
ph  /\  F : X
--> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )  ->  -.  E. x  e.  RR  A. y  e.  X  (
( z  e.  X  |->  ( 1  /  ( sup ( ran  F ,  RR ,  <  )  -  ( F `  z ) ) ) ) `  y )  <_  x
)
17996, 178pm2.65da 560 . . 3  |-  ( ph  ->  -.  F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) )
180132ralrimiva 2733 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  X  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  )
)
181 breq2 4158 . . . . . . . . . 10  |-  ( ( F `  x )  =  sup ( ran 
F ,  RR ,  <  )  ->  ( ( F `  y )  <_  ( F `  x
)  <->  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  ) ) )
182181ralbidv 2670 . . . . . . . . 9  |-  ( ( F `  x )  =  sup ( ran 
F ,  RR ,  <  )  ->  ( A. y  e.  X  ( F `  y )  <_  ( F `  x
)  <->  A. y  e.  X  ( F `  y )  <_  sup ( ran  F ,  RR ,  <  )
) )
183180, 182syl5ibrcom 214 . . . . . . . 8  |-  ( ph  ->  ( ( F `  x )  =  sup ( ran  F ,  RR ,  <  )  ->  A. y  e.  X  ( F `  y )  <_  ( F `  x )
) )
184183necon3bd 2588 . . . . . . 7  |-  ( ph  ->  ( -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  ( F `  x
)  =/=  sup ( ran  F ,  RR ,  <  ) ) )
185184adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  ( F `  x )  =/=  sup ( ran  F ,  RR ,  <  )
) )
18620ffvelrnda 5810 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  RR )
187 eldifsn 3871 . . . . . . . 8  |-  ( ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( ( F `  x )  e.  RR  /\  ( F `
 x )  =/= 
sup ( ran  F ,  RR ,  <  )
) )
188187baib 872 . . . . . . 7  |-  ( ( F `  x )  e.  RR  ->  (
( F `  x
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( F `  x )  =/=  sup ( ran  F ,  RR ,  <  ) ) )
189186, 188syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
( F `  x
)  e.  ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( F `  x )  =/=  sup ( ran  F ,  RR ,  <  ) ) )
190185, 189sylibrd 226 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  ( -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
191190ralimdva 2728 . . . 4  |-  ( ph  ->  ( A. x  e.  X  -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  A. x  e.  X  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
192 ffnfv 5834 . . . . . 6  |-  ( F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  <->  ( F  Fn  X  /\  A. x  e.  X  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
193192baib 872 . . . . 5  |-  ( F  Fn  X  ->  ( F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } )  <->  A. x  e.  X  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
19432, 193syl 16 . . . 4  |-  ( ph  ->  ( F : X --> ( RR  \  { sup ( ran  F ,  RR ,  <  ) } )  <->  A. x  e.  X  ( F `  x )  e.  ( RR  \  { sup ( ran  F ,  RR ,  <  ) } ) ) )
195191, 194sylibrd 226 . . 3  |-  ( ph  ->  ( A. x  e.  X  -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )  ->  F : X --> ( RR 
\  { sup ( ran  F ,  RR ,  <  ) } ) ) )
196179, 195mtod 170 . 2  |-  ( ph  ->  -.  A. x  e.  X  -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )
)
197 dfrex2 2663 . 2  |-  ( E. x  e.  X  A. y  e.  X  ( F `  y )  <_  ( F `  x
)  <->  -.  A. x  e.  X  -.  A. y  e.  X  ( F `  y )  <_  ( F `  x )
)
198196, 197sylibr 204 1  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( F `  y )  <_  ( F `  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   A.wral 2650   E.wrex 2651    \ cdif 3261    C_ wss 3264   (/)c0 3572   ifcif 3683   {csn 3758   U.cuni 3958   class class class wbr 4154    e. cmpt 4208   dom cdm 4819   ran crn 4820    Fn wfn 5390   -->wf 5391   ` cfv 5395  (class class class)co 6021   supcsup 7381   CCcc 8922   RRcr 8923   0cc0 8924   1c1 8925    < clt 9054    <_ cle 9055    - cmin 9224    / cdiv 9610   (,)cioo 10849   ↾t crest 13576   TopOpenctopn 13577   topGenctg 13593  ℂfldccnfld 16627   Topctop 16882  TopOnctopon 16883    Cn ccn 17211   Compccmp 17372    tX ctx 17514
This theorem is referenced by:  evth2  18857  evthicc  19224  evthf  27367  cncmpmax  27372
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-icc 10856  df-fz 10977  df-fzo 11067  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-mulg 14743  df-cntz 15044  df-cmn 15342  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cn 17214  df-cnp 17215  df-cmp 17373  df-tx 17516  df-hmeo 17709  df-xms 18260  df-ms 18261  df-tms 18262
  Copyright terms: Public domain W3C validator