MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evth2 Structured version   Unicode version

Theorem evth2 18978
Description: The Extreme Value Theorem, minimum version. A continuous function from a nonempty compact topological space to the reals attains its minimum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1  |-  X  = 
U. J
bndth.2  |-  K  =  ( topGen `  ran  (,) )
bndth.3  |-  ( ph  ->  J  e.  Comp )
bndth.4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
evth.5  |-  ( ph  ->  X  =/=  (/) )
Assertion
Ref Expression
evth2  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( F `  x )  <_  ( F `  y ) )
Distinct variable groups:    x, y, F    y, K    ph, x, y   
x, X, y    x, J, y
Allowed substitution hint:    K( x)

Proof of Theorem evth2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bndth.1 . . 3  |-  X  = 
U. J
2 bndth.2 . . 3  |-  K  =  ( topGen `  ran  (,) )
3 bndth.3 . . 3  |-  ( ph  ->  J  e.  Comp )
4 cmptop 17451 . . . . . 6  |-  ( J  e.  Comp  ->  J  e. 
Top )
53, 4syl 16 . . . . 5  |-  ( ph  ->  J  e.  Top )
61toptopon 16991 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
75, 6sylib 189 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
8 bndth.4 . . . . . . 7  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
9 uniretop 18789 . . . . . . . . 9  |-  RR  =  U. ( topGen `  ran  (,) )
102unieqi 4018 . . . . . . . . 9  |-  U. K  =  U. ( topGen `  ran  (,) )
119, 10eqtr4i 2459 . . . . . . . 8  |-  RR  =  U. K
121, 11cnf 17303 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> RR )
138, 12syl 16 . . . . . 6  |-  ( ph  ->  F : X --> RR )
1413feqmptd 5772 . . . . 5  |-  ( ph  ->  F  =  ( z  e.  X  |->  ( F `
 z ) ) )
1514, 8eqeltrrd 2511 . . . 4  |-  ( ph  ->  ( z  e.  X  |->  ( F `  z
) )  e.  ( J  Cn  K ) )
16 retopon 18790 . . . . . 6  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
172, 16eqeltri 2506 . . . . 5  |-  K  e.  (TopOn `  RR )
1817a1i 11 . . . 4  |-  ( ph  ->  K  e.  (TopOn `  RR ) )
19 eqid 2436 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2019cnfldtopon 18810 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
2120a1i 11 . . . . . . . 8  |-  ( ph  ->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
22 0cn 9077 . . . . . . . . 9  |-  0  e.  CC
2322a1i 11 . . . . . . . 8  |-  ( ph  ->  0  e.  CC )
2418, 21, 23cnmptc 17687 . . . . . . 7  |-  ( ph  ->  ( y  e.  RR  |->  0 )  e.  ( K  Cn  ( TopOpen ` fld )
) )
2519tgioo2 18827 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
262, 25eqtri 2456 . . . . . . . 8  |-  K  =  ( ( TopOpen ` fld )t  RR )
27 ax-resscn 9040 . . . . . . . . 9  |-  RR  C_  CC
2827a1i 11 . . . . . . . 8  |-  ( ph  ->  RR  C_  CC )
2921cnmptid 17686 . . . . . . . 8  |-  ( ph  ->  ( y  e.  CC  |->  y )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
3026, 21, 28, 29cnmpt1res 17701 . . . . . . 7  |-  ( ph  ->  ( y  e.  RR  |->  y )  e.  ( K  Cn  ( TopOpen ` fld )
) )
3119subcn 18889 . . . . . . . 8  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
3231a1i 11 . . . . . . 7  |-  ( ph  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
3318, 24, 30, 32cnmpt12f 17691 . . . . . 6  |-  ( ph  ->  ( y  e.  RR  |->  ( 0  -  y
) )  e.  ( K  Cn  ( TopOpen ` fld )
) )
34 df-neg 9287 . . . . . . . . . . 11  |-  -u y  =  ( 0  -  y )
35 renegcl 9357 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  -u y  e.  RR )
3634, 35syl5eqelr 2521 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
0  -  y )  e.  RR )
3736adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR )  ->  ( 0  -  y )  e.  RR )
38 eqid 2436 . . . . . . . . 9  |-  ( y  e.  RR  |->  ( 0  -  y ) )  =  ( y  e.  RR  |->  ( 0  -  y ) )
3937, 38fmptd 5886 . . . . . . . 8  |-  ( ph  ->  ( y  e.  RR  |->  ( 0  -  y
) ) : RR --> RR )
40 frn 5590 . . . . . . . 8  |-  ( ( y  e.  RR  |->  ( 0  -  y ) ) : RR --> RR  ->  ran  ( y  e.  RR  |->  ( 0  -  y
) )  C_  RR )
4139, 40syl 16 . . . . . . 7  |-  ( ph  ->  ran  ( y  e.  RR  |->  ( 0  -  y ) )  C_  RR )
42 cnrest2 17343 . . . . . . 7  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( y  e.  RR  |->  ( 0  -  y
) )  C_  RR  /\  RR  C_  CC )  ->  ( ( y  e.  RR  |->  ( 0  -  y ) )  e.  ( K  Cn  ( TopOpen
` fld
) )  <->  ( y  e.  RR  |->  ( 0  -  y ) )  e.  ( K  Cn  (
( TopOpen ` fld )t  RR ) ) ) )
4321, 41, 28, 42syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( ( y  e.  RR  |->  ( 0  -  y ) )  e.  ( K  Cn  ( TopOpen
` fld
) )  <->  ( y  e.  RR  |->  ( 0  -  y ) )  e.  ( K  Cn  (
( TopOpen ` fld )t  RR ) ) ) )
4433, 43mpbid 202 . . . . 5  |-  ( ph  ->  ( y  e.  RR  |->  ( 0  -  y
) )  e.  ( K  Cn  ( (
TopOpen ` fld )t  RR ) ) )
4526oveq2i 6085 . . . . 5  |-  ( K  Cn  K )  =  ( K  Cn  (
( TopOpen ` fld )t  RR ) )
4644, 45syl6eleqr 2527 . . . 4  |-  ( ph  ->  ( y  e.  RR  |->  ( 0  -  y
) )  e.  ( K  Cn  K ) )
47 negeq 9291 . . . . 5  |-  ( y  =  ( F `  z )  ->  -u y  =  -u ( F `  z ) )
4834, 47syl5eqr 2482 . . . 4  |-  ( y  =  ( F `  z )  ->  (
0  -  y )  =  -u ( F `  z ) )
497, 15, 18, 46, 48cnmpt11 17688 . . 3  |-  ( ph  ->  ( z  e.  X  |-> 
-u ( F `  z ) )  e.  ( J  Cn  K
) )
50 evth.5 . . 3  |-  ( ph  ->  X  =/=  (/) )
511, 2, 3, 49, 50evth 18977 . 2  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( ( z  e.  X  |->  -u ( F `  z ) ) `  y )  <_  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x ) )
52 fveq2 5721 . . . . . . . . 9  |-  ( z  =  y  ->  ( F `  z )  =  ( F `  y ) )
5352negeqd 9293 . . . . . . . 8  |-  ( z  =  y  ->  -u ( F `  z )  =  -u ( F `  y ) )
54 eqid 2436 . . . . . . . 8  |-  ( z  e.  X  |->  -u ( F `  z )
)  =  ( z  e.  X  |->  -u ( F `  z )
)
55 negex 9297 . . . . . . . 8  |-  -u ( F `  y )  e.  _V
5653, 54, 55fvmpt 5799 . . . . . . 7  |-  ( y  e.  X  ->  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  y )  =  -u ( F `  y ) )
5756adantl 453 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  y )  =  -u ( F `  y ) )
58 fveq2 5721 . . . . . . . . 9  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
5958negeqd 9293 . . . . . . . 8  |-  ( z  =  x  ->  -u ( F `  z )  =  -u ( F `  x ) )
60 negex 9297 . . . . . . . 8  |-  -u ( F `  x )  e.  _V
6159, 54, 60fvmpt 5799 . . . . . . 7  |-  ( x  e.  X  ->  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  =  -u ( F `  x ) )
6261ad2antlr 708 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  =  -u ( F `  x ) )
6357, 62breq12d 4218 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( ( z  e.  X  |->  -u ( F `  z ) ) `  y )  <_  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  <->  -u ( F `
 y )  <_  -u ( F `  x
) ) )
6413ffvelrnda 5863 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  RR )
6564adantr 452 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  ( F `  x )  e.  RR )
6613ffvelrnda 5863 . . . . . . 7  |-  ( (
ph  /\  y  e.  X )  ->  ( F `  y )  e.  RR )
6766adantlr 696 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  ( F `  y )  e.  RR )
6865, 67lenegd 9598 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( F `  x
)  <_  ( F `  y )  <->  -u ( F `
 y )  <_  -u ( F `  x
) ) )
6963, 68bitr4d 248 . . . 4  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( ( z  e.  X  |->  -u ( F `  z ) ) `  y )  <_  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  <->  ( F `  x )  <_  ( F `  y )
) )
7069ralbidva 2714 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( A. y  e.  X  ( ( z  e.  X  |->  -u ( F `  z ) ) `  y )  <_  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  <->  A. y  e.  X  ( F `  x )  <_  ( F `  y )
) )
7170rexbidva 2715 . 2  |-  ( ph  ->  ( E. x  e.  X  A. y  e.  X  ( ( z  e.  X  |->  -u ( F `  z )
) `  y )  <_  ( ( z  e.  X  |->  -u ( F `  z ) ) `  x )  <->  E. x  e.  X  A. y  e.  X  ( F `  x )  <_  ( F `  y )
) )
7251, 71mpbid 202 1  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( F `  x )  <_  ( F `  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2698   E.wrex 2699    C_ wss 3313   (/)c0 3621   U.cuni 4008   class class class wbr 4205    e. cmpt 4259   ran crn 4872   -->wf 5443   ` cfv 5447  (class class class)co 6074   CCcc 8981   RRcr 8982   0cc0 8983    <_ cle 9114    - cmin 9284   -ucneg 9285   (,)cioo 10909   ↾t crest 13641   TopOpenctopn 13642   topGenctg 13658  ℂfldccnfld 16696   Topctop 16951  TopOnctopon 16952    Cn ccn 17281   Compccmp 17442    tX ctx 17585
This theorem is referenced by:  lebnumlem3  18981  evthicc  19349  ftalem3  20850  evth2f  27654  stoweidlem28  27745
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-inf2 7589  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061  ax-mulf 9063
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-iin 4089  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-of 6298  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-2o 6718  df-oadd 6721  df-er 6898  df-map 7013  df-ixp 7057  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-fi 7409  df-sup 7439  df-oi 7472  df-card 7819  df-cda 8041  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-7 10056  df-8 10057  df-9 10058  df-10 10059  df-n0 10215  df-z 10276  df-dec 10376  df-uz 10482  df-q 10568  df-rp 10606  df-xneg 10703  df-xadd 10704  df-xmul 10705  df-ioo 10913  df-icc 10916  df-fz 11037  df-fzo 11129  df-seq 11317  df-exp 11376  df-hash 11612  df-cj 11897  df-re 11898  df-im 11899  df-sqr 12033  df-abs 12034  df-struct 13464  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-mulr 13536  df-starv 13537  df-sca 13538  df-vsca 13539  df-tset 13541  df-ple 13542  df-ds 13544  df-unif 13545  df-hom 13546  df-cco 13547  df-rest 13643  df-topn 13644  df-topgen 13660  df-pt 13661  df-prds 13664  df-xrs 13719  df-0g 13720  df-gsum 13721  df-qtop 13726  df-imas 13727  df-xps 13729  df-mre 13804  df-mrc 13805  df-acs 13807  df-mnd 14683  df-submnd 14732  df-mulg 14808  df-cntz 15109  df-cmn 15407  df-psmet 16687  df-xmet 16688  df-met 16689  df-bl 16690  df-mopn 16691  df-cnfld 16697  df-top 16956  df-bases 16958  df-topon 16959  df-topsp 16960  df-cn 17284  df-cnp 17285  df-cmp 17443  df-tx 17587  df-hmeo 17780  df-xms 18343  df-ms 18344  df-tms 18345
  Copyright terms: Public domain W3C validator