MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evth2 Structured version   Unicode version

Theorem evth2 18990
Description: The Extreme Value Theorem, minimum version. A continuous function from a nonempty compact topological space to the reals attains its minimum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1  |-  X  = 
U. J
bndth.2  |-  K  =  ( topGen `  ran  (,) )
bndth.3  |-  ( ph  ->  J  e.  Comp )
bndth.4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
evth.5  |-  ( ph  ->  X  =/=  (/) )
Assertion
Ref Expression
evth2  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( F `  x )  <_  ( F `  y ) )
Distinct variable groups:    x, y, F    y, K    ph, x, y   
x, X, y    x, J, y
Allowed substitution hint:    K( x)

Proof of Theorem evth2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bndth.1 . . 3  |-  X  = 
U. J
2 bndth.2 . . 3  |-  K  =  ( topGen `  ran  (,) )
3 bndth.3 . . 3  |-  ( ph  ->  J  e.  Comp )
4 cmptop 17463 . . . . . 6  |-  ( J  e.  Comp  ->  J  e. 
Top )
53, 4syl 16 . . . . 5  |-  ( ph  ->  J  e.  Top )
61toptopon 17003 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
75, 6sylib 190 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
8 bndth.4 . . . . . . 7  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
9 uniretop 18801 . . . . . . . . 9  |-  RR  =  U. ( topGen `  ran  (,) )
102unieqi 4027 . . . . . . . . 9  |-  U. K  =  U. ( topGen `  ran  (,) )
119, 10eqtr4i 2461 . . . . . . . 8  |-  RR  =  U. K
121, 11cnf 17315 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> RR )
138, 12syl 16 . . . . . 6  |-  ( ph  ->  F : X --> RR )
1413feqmptd 5782 . . . . 5  |-  ( ph  ->  F  =  ( z  e.  X  |->  ( F `
 z ) ) )
1514, 8eqeltrrd 2513 . . . 4  |-  ( ph  ->  ( z  e.  X  |->  ( F `  z
) )  e.  ( J  Cn  K ) )
16 retopon 18802 . . . . . 6  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
172, 16eqeltri 2508 . . . . 5  |-  K  e.  (TopOn `  RR )
1817a1i 11 . . . 4  |-  ( ph  ->  K  e.  (TopOn `  RR ) )
19 eqid 2438 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2019cnfldtopon 18822 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
2120a1i 11 . . . . . . . 8  |-  ( ph  ->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
22 0cn 9089 . . . . . . . . 9  |-  0  e.  CC
2322a1i 11 . . . . . . . 8  |-  ( ph  ->  0  e.  CC )
2418, 21, 23cnmptc 17699 . . . . . . 7  |-  ( ph  ->  ( y  e.  RR  |->  0 )  e.  ( K  Cn  ( TopOpen ` fld )
) )
2519tgioo2 18839 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
262, 25eqtri 2458 . . . . . . . 8  |-  K  =  ( ( TopOpen ` fld )t  RR )
27 ax-resscn 9052 . . . . . . . . 9  |-  RR  C_  CC
2827a1i 11 . . . . . . . 8  |-  ( ph  ->  RR  C_  CC )
2921cnmptid 17698 . . . . . . . 8  |-  ( ph  ->  ( y  e.  CC  |->  y )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
3026, 21, 28, 29cnmpt1res 17713 . . . . . . 7  |-  ( ph  ->  ( y  e.  RR  |->  y )  e.  ( K  Cn  ( TopOpen ` fld )
) )
3119subcn 18901 . . . . . . . 8  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
3231a1i 11 . . . . . . 7  |-  ( ph  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
3318, 24, 30, 32cnmpt12f 17703 . . . . . 6  |-  ( ph  ->  ( y  e.  RR  |->  ( 0  -  y
) )  e.  ( K  Cn  ( TopOpen ` fld )
) )
34 df-neg 9299 . . . . . . . . . . 11  |-  -u y  =  ( 0  -  y )
35 renegcl 9369 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  -u y  e.  RR )
3634, 35syl5eqelr 2523 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
0  -  y )  e.  RR )
3736adantl 454 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  RR )  ->  ( 0  -  y )  e.  RR )
38 eqid 2438 . . . . . . . . 9  |-  ( y  e.  RR  |->  ( 0  -  y ) )  =  ( y  e.  RR  |->  ( 0  -  y ) )
3937, 38fmptd 5896 . . . . . . . 8  |-  ( ph  ->  ( y  e.  RR  |->  ( 0  -  y
) ) : RR --> RR )
40 frn 5600 . . . . . . . 8  |-  ( ( y  e.  RR  |->  ( 0  -  y ) ) : RR --> RR  ->  ran  ( y  e.  RR  |->  ( 0  -  y
) )  C_  RR )
4139, 40syl 16 . . . . . . 7  |-  ( ph  ->  ran  ( y  e.  RR  |->  ( 0  -  y ) )  C_  RR )
42 cnrest2 17355 . . . . . . 7  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( y  e.  RR  |->  ( 0  -  y
) )  C_  RR  /\  RR  C_  CC )  ->  ( ( y  e.  RR  |->  ( 0  -  y ) )  e.  ( K  Cn  ( TopOpen
` fld
) )  <->  ( y  e.  RR  |->  ( 0  -  y ) )  e.  ( K  Cn  (
( TopOpen ` fld )t  RR ) ) ) )
4321, 41, 28, 42syl3anc 1185 . . . . . 6  |-  ( ph  ->  ( ( y  e.  RR  |->  ( 0  -  y ) )  e.  ( K  Cn  ( TopOpen
` fld
) )  <->  ( y  e.  RR  |->  ( 0  -  y ) )  e.  ( K  Cn  (
( TopOpen ` fld )t  RR ) ) ) )
4433, 43mpbid 203 . . . . 5  |-  ( ph  ->  ( y  e.  RR  |->  ( 0  -  y
) )  e.  ( K  Cn  ( (
TopOpen ` fld )t  RR ) ) )
4526oveq2i 6095 . . . . 5  |-  ( K  Cn  K )  =  ( K  Cn  (
( TopOpen ` fld )t  RR ) )
4644, 45syl6eleqr 2529 . . . 4  |-  ( ph  ->  ( y  e.  RR  |->  ( 0  -  y
) )  e.  ( K  Cn  K ) )
47 negeq 9303 . . . . 5  |-  ( y  =  ( F `  z )  ->  -u y  =  -u ( F `  z ) )
4834, 47syl5eqr 2484 . . . 4  |-  ( y  =  ( F `  z )  ->  (
0  -  y )  =  -u ( F `  z ) )
497, 15, 18, 46, 48cnmpt11 17700 . . 3  |-  ( ph  ->  ( z  e.  X  |-> 
-u ( F `  z ) )  e.  ( J  Cn  K
) )
50 evth.5 . . 3  |-  ( ph  ->  X  =/=  (/) )
511, 2, 3, 49, 50evth 18989 . 2  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( ( z  e.  X  |->  -u ( F `  z ) ) `  y )  <_  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x ) )
52 fveq2 5731 . . . . . . . . 9  |-  ( z  =  y  ->  ( F `  z )  =  ( F `  y ) )
5352negeqd 9305 . . . . . . . 8  |-  ( z  =  y  ->  -u ( F `  z )  =  -u ( F `  y ) )
54 eqid 2438 . . . . . . . 8  |-  ( z  e.  X  |->  -u ( F `  z )
)  =  ( z  e.  X  |->  -u ( F `  z )
)
55 negex 9309 . . . . . . . 8  |-  -u ( F `  y )  e.  _V
5653, 54, 55fvmpt 5809 . . . . . . 7  |-  ( y  e.  X  ->  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  y )  =  -u ( F `  y ) )
5756adantl 454 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  y )  =  -u ( F `  y ) )
58 fveq2 5731 . . . . . . . . 9  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
5958negeqd 9305 . . . . . . . 8  |-  ( z  =  x  ->  -u ( F `  z )  =  -u ( F `  x ) )
60 negex 9309 . . . . . . . 8  |-  -u ( F `  x )  e.  _V
6159, 54, 60fvmpt 5809 . . . . . . 7  |-  ( x  e.  X  ->  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  =  -u ( F `  x ) )
6261ad2antlr 709 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  =  -u ( F `  x ) )
6357, 62breq12d 4228 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( ( z  e.  X  |->  -u ( F `  z ) ) `  y )  <_  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  <->  -u ( F `
 y )  <_  -u ( F `  x
) ) )
6413ffvelrnda 5873 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  RR )
6564adantr 453 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  ( F `  x )  e.  RR )
6613ffvelrnda 5873 . . . . . . 7  |-  ( (
ph  /\  y  e.  X )  ->  ( F `  y )  e.  RR )
6766adantlr 697 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  ( F `  y )  e.  RR )
6865, 67lenegd 9610 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( F `  x
)  <_  ( F `  y )  <->  -u ( F `
 y )  <_  -u ( F `  x
) ) )
6963, 68bitr4d 249 . . . 4  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
( ( z  e.  X  |->  -u ( F `  z ) ) `  y )  <_  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  <->  ( F `  x )  <_  ( F `  y )
) )
7069ralbidva 2723 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( A. y  e.  X  ( ( z  e.  X  |->  -u ( F `  z ) ) `  y )  <_  (
( z  e.  X  |-> 
-u ( F `  z ) ) `  x )  <->  A. y  e.  X  ( F `  x )  <_  ( F `  y )
) )
7170rexbidva 2724 . 2  |-  ( ph  ->  ( E. x  e.  X  A. y  e.  X  ( ( z  e.  X  |->  -u ( F `  z )
) `  y )  <_  ( ( z  e.  X  |->  -u ( F `  z ) ) `  x )  <->  E. x  e.  X  A. y  e.  X  ( F `  x )  <_  ( F `  y )
) )
7251, 71mpbid 203 1  |-  ( ph  ->  E. x  e.  X  A. y  e.  X  ( F `  x )  <_  ( F `  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708    C_ wss 3322   (/)c0 3630   U.cuni 4017   class class class wbr 4215    e. cmpt 4269   ran crn 4882   -->wf 5453   ` cfv 5457  (class class class)co 6084   CCcc 8993   RRcr 8994   0cc0 8995    <_ cle 9126    - cmin 9296   -ucneg 9297   (,)cioo 10921   ↾t crest 13653   TopOpenctopn 13654   topGenctg 13670  ℂfldccnfld 16708   Topctop 16963  TopOnctopon 16964    Cn ccn 17293   Compccmp 17454    tX ctx 17597
This theorem is referenced by:  lebnumlem3  18993  evthicc  19361  ftalem3  20862  evth2f  27675  stoweidlem28  27766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-sup 7449  df-oi 7482  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ioo 10925  df-icc 10928  df-fz 11049  df-fzo 11141  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-hom 13558  df-cco 13559  df-rest 13655  df-topn 13656  df-topgen 13672  df-pt 13673  df-prds 13676  df-xrs 13731  df-0g 13732  df-gsum 13733  df-qtop 13738  df-imas 13739  df-xps 13741  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-submnd 14744  df-mulg 14820  df-cntz 15121  df-cmn 15419  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-cnfld 16709  df-top 16968  df-bases 16970  df-topon 16971  df-topsp 16972  df-cn 17296  df-cnp 17297  df-cmp 17455  df-tx 17599  df-hmeo 17792  df-xms 18355  df-ms 18356  df-tms 18357
  Copyright terms: Public domain W3C validator