MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-an Structured version   Unicode version

Theorem ex-an 21730
Description: Example for df-an 361. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
ex-an  |-  ( 2  =  2  /\  3  =  3 )

Proof of Theorem ex-an
StepHypRef Expression
1 eqid 2436 . 2  |-  2  =  2
2 eqid 2436 . 2  |-  3  =  3
31, 2pm3.2i 442 1  |-  ( 2  =  2  /\  3  =  3 )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1652   2c2 10049   3c3 10050
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-an 361  df-cleq 2429
  Copyright terms: Public domain W3C validator