MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-an Unicode version

Theorem ex-an 20825
Description: Example for df-an 360. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
ex-an  |-  ( 2  =  2  /\  3  =  3 )

Proof of Theorem ex-an
StepHypRef Expression
1 eqid 2296 . 2  |-  2  =  2
2 eqid 2296 . 2  |-  3  =  3
31, 2pm3.2i 441 1  |-  ( 2  =  2  /\  3  =  3 )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1632   2c2 9811   3c3 9812
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-cleq 2289
  Copyright terms: Public domain W3C validator