Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-br Structured version   Unicode version

Theorem ex-br 21739
 Description: Example for df-br 4213. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-br

Proof of Theorem ex-br
StepHypRef Expression
1 opex 4427 . . . 4
21prid2 3913 . . 3
3 id 20 . . 3
42, 3syl5eleqr 2523 . 2
5 df-br 4213 . 2
64, 5sylibr 204 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652   wcel 1725  cpr 3815  cop 3817   class class class wbr 4212  c2 10049  c3 10050  c6 10053  c9 10056 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213
 Copyright terms: Public domain W3C validator