MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-opab Structured version   Unicode version

Theorem ex-opab 21732
Description: Example for df-opab 4259. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-opab  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  CC  /\  y  e.  CC  /\  (
x  +  1 )  =  y ) }  ->  3 R 4 )
Distinct variable group:    x, y
Allowed substitution hints:    R( x, y)

Proof of Theorem ex-opab
StepHypRef Expression
1 3cn 10064 . . 3  |-  3  e.  CC
2 4cn 10066 . . 3  |-  4  e.  CC
3 3p1e4 10096 . . 3  |-  ( 3  +  1 )  =  4
41elexi 2957 . . . 4  |-  3  e.  _V
52elexi 2957 . . . 4  |-  4  e.  _V
6 eleq1 2495 . . . . 5  |-  ( x  =  3  ->  (
x  e.  CC  <->  3  e.  CC ) )
7 oveq1 6080 . . . . . 6  |-  ( x  =  3  ->  (
x  +  1 )  =  ( 3  +  1 ) )
87eqeq1d 2443 . . . . 5  |-  ( x  =  3  ->  (
( x  +  1 )  =  y  <->  ( 3  +  1 )  =  y ) )
96, 83anbi13d 1256 . . . 4  |-  ( x  =  3  ->  (
( x  e.  CC  /\  y  e.  CC  /\  ( x  +  1
)  =  y )  <-> 
( 3  e.  CC  /\  y  e.  CC  /\  ( 3  +  1 )  =  y ) ) )
10 eleq1 2495 . . . . 5  |-  ( y  =  4  ->  (
y  e.  CC  <->  4  e.  CC ) )
11 eqeq2 2444 . . . . 5  |-  ( y  =  4  ->  (
( 3  +  1 )  =  y  <->  ( 3  +  1 )  =  4 ) )
1210, 113anbi23d 1257 . . . 4  |-  ( y  =  4  ->  (
( 3  e.  CC  /\  y  e.  CC  /\  ( 3  +  1 )  =  y )  <-> 
( 3  e.  CC  /\  4  e.  CC  /\  ( 3  +  1 )  =  4 ) ) )
13 eqid 2435 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  y  e.  CC  /\  (
x  +  1 )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  y  e.  CC  /\  (
x  +  1 )  =  y ) }
144, 5, 9, 12, 13brab 4469 . . 3  |-  ( 3 { <. x ,  y
>.  |  ( x  e.  CC  /\  y  e.  CC  /\  ( x  +  1 )  =  y ) } 4  <-> 
( 3  e.  CC  /\  4  e.  CC  /\  ( 3  +  1 )  =  4 ) )
151, 2, 3, 14mpbir3an 1136 . 2  |-  3 { <. x ,  y
>.  |  ( x  e.  CC  /\  y  e.  CC  /\  ( x  +  1 )  =  y ) } 4
16 breq 4206 . 2  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  CC  /\  y  e.  CC  /\  (
x  +  1 )  =  y ) }  ->  ( 3 R 4  <->  3 { <. x ,  y >.  |  ( x  e.  CC  /\  y  e.  CC  /\  (
x  +  1 )  =  y ) } 4 ) )
1715, 16mpbiri 225 1  |-  ( R  =  { <. x ,  y >.  |  ( x  e.  CC  /\  y  e.  CC  /\  (
x  +  1 )  =  y ) }  ->  3 R 4 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204   {copab 4257  (class class class)co 6073   CCcc 8980   1c1 8983    + caddc 8985   3c3 10042   4c4 10043
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-i2m1 9050  ax-1ne0 9051  ax-rrecex 9054  ax-cnre 9055
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-iota 5410  df-fv 5454  df-ov 6076  df-2 10050  df-3 10051  df-4 10052
  Copyright terms: Public domain W3C validator