MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-pss Unicode version

Theorem ex-pss 21586
Description: Example for df-pss 3281. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-pss  |-  { 1 ,  2 }  C.  { 1 ,  2 ,  3 }

Proof of Theorem ex-pss
StepHypRef Expression
1 ex-ss 21585 . 2  |-  { 1 ,  2 }  C_  { 1 ,  2 ,  3 }
2 3re 10005 . . . . . 6  |-  3  e.  RR
32elexi 2910 . . . . 5  |-  3  e.  _V
43tpid3 3865 . . . 4  |-  3  e.  { 1 ,  2 ,  3 }
5 1re 9025 . . . . . 6  |-  1  e.  RR
6 1lt3 10078 . . . . . 6  |-  1  <  3
75, 6gtneii 9118 . . . . 5  |-  3  =/=  1
8 2re 10003 . . . . . 6  |-  2  e.  RR
9 2lt3 10077 . . . . . 6  |-  2  <  3
108, 9gtneii 9118 . . . . 5  |-  3  =/=  2
117, 10nelpri 3780 . . . 4  |-  -.  3  e.  { 1 ,  2 }
12 nelne1 2641 . . . 4  |-  ( ( 3  e.  { 1 ,  2 ,  3 }  /\  -.  3  e.  { 1 ,  2 } )  ->  { 1 ,  2 ,  3 }  =/=  { 1 ,  2 } )
134, 11, 12mp2an 654 . . 3  |-  { 1 ,  2 ,  3 }  =/=  { 1 ,  2 }
1413necomi 2634 . 2  |-  { 1 ,  2 }  =/=  { 1 ,  2 ,  3 }
15 df-pss 3281 . 2  |-  ( { 1 ,  2 } 
C.  { 1 ,  2 ,  3 }  <-> 
( { 1 ,  2 }  C_  { 1 ,  2 ,  3 }  /\  { 1 ,  2 }  =/=  { 1 ,  2 ,  3 } ) )
161, 14, 15mpbir2an 887 1  |-  { 1 ,  2 }  C.  { 1 ,  2 ,  3 }
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 1717    =/= wne 2552    C_ wss 3265    C. wpss 3266   {cpr 3760   {ctp 3761   RRcr 8924   1c1 8926   2c2 9983   3c3 9984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-po 4446  df-so 4447  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-riota 6487  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-2 9992  df-3 9993
  Copyright terms: Public domain W3C validator