MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-res Unicode version

Theorem ex-res 20828
Description: Example for df-res 4701. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-res  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  ( F  |`  B )  =  { <. 2 ,  6
>. } )

Proof of Theorem ex-res
StepHypRef Expression
1 simpl 443 . . . . 5  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  F  =  { <. 2 ,  6
>. ,  <. 3 ,  9 >. } )
2 df-pr 3647 . . . . 5  |-  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  =  ( {
<. 2 ,  6
>. }  u.  { <. 3 ,  9 >. } )
31, 2syl6eq 2331 . . . 4  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  F  =  ( { <. 2 ,  6 >. }  u.  { <. 3 ,  9 >. } ) )
43reseq1d 4954 . . 3  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  ( F  |`  B )  =  ( ( { <. 2 ,  6 >. }  u.  { <. 3 ,  9 >. } )  |`  B ) )
5 resundir 4970 . . 3  |-  ( ( { <. 2 ,  6
>. }  u.  { <. 3 ,  9 >. } )  |`  B )  =  ( ( {
<. 2 ,  6
>. }  |`  B )  u.  ( { <. 3 ,  9 >. }  |`  B ) )
64, 5syl6eq 2331 . 2  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  ( F  |`  B )  =  ( ( { <. 2 ,  6 >. }  |`  B )  u.  ( { <. 3 ,  9
>. }  |`  B )
) )
7 2re 9815 . . . . . . 7  |-  2  e.  RR
87elexi 2797 . . . . . 6  |-  2  e.  _V
9 6re 9822 . . . . . . 7  |-  6  e.  RR
109elexi 2797 . . . . . 6  |-  6  e.  _V
118, 10relsnop 4791 . . . . 5  |-  Rel  { <. 2 ,  6 >. }
12 dmsnopss 5145 . . . . . 6  |-  dom  { <. 2 ,  6 >. }  C_  { 2 }
13 snsspr2 3765 . . . . . . 7  |-  { 2 }  C_  { 1 ,  2 }
14 simpr 447 . . . . . . 7  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  B  =  { 1 ,  2 } )
1513, 14syl5sseqr 3227 . . . . . 6  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  { 2 }  C_  B )
1612, 15syl5ss 3190 . . . . 5  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  dom  {
<. 2 ,  6
>. }  C_  B )
17 relssres 4992 . . . . 5  |-  ( ( Rel  { <. 2 ,  6 >. }  /\  dom  { <. 2 ,  6
>. }  C_  B )  ->  ( { <. 2 ,  6 >. }  |`  B )  =  { <. 2 ,  6 >. } )
1811, 16, 17sylancr 644 . . . 4  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  ( { <. 2 ,  6
>. }  |`  B )  =  { <. 2 ,  6
>. } )
19 1re 8837 . . . . . . . 8  |-  1  e.  RR
20 1lt3 9888 . . . . . . . 8  |-  1  <  3
2119, 20gtneii 8930 . . . . . . 7  |-  3  =/=  1
22 2lt3 9887 . . . . . . . 8  |-  2  <  3
237, 22gtneii 8930 . . . . . . 7  |-  3  =/=  2
2421, 23nelpri 3661 . . . . . 6  |-  -.  3  e.  { 1 ,  2 }
2514eleq2d 2350 . . . . . 6  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  (
3  e.  B  <->  3  e.  { 1 ,  2 } ) )
2624, 25mtbiri 294 . . . . 5  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  -.  3  e.  B )
27 ressnop0 5703 . . . . 5  |-  ( -.  3  e.  B  -> 
( { <. 3 ,  9 >. }  |`  B )  =  (/) )
2826, 27syl 15 . . . 4  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  ( { <. 3 ,  9
>. }  |`  B )  =  (/) )
2918, 28uneq12d 3330 . . 3  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  (
( { <. 2 ,  6 >. }  |`  B )  u.  ( { <. 3 ,  9 >. }  |`  B ) )  =  ( { <. 2 ,  6 >. }  u.  (/) ) )
30 un0 3479 . . 3  |-  ( {
<. 2 ,  6
>. }  u.  (/) )  =  { <. 2 ,  6
>. }
3129, 30syl6eq 2331 . 2  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  (
( { <. 2 ,  6 >. }  |`  B )  u.  ( { <. 3 ,  9 >. }  |`  B ) )  =  { <. 2 ,  6
>. } )
326, 31eqtrd 2315 1  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  ( F  |`  B )  =  { <. 2 ,  6
>. } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    u. cun 3150    C_ wss 3152   (/)c0 3455   {csn 3640   {cpr 3641   <.cop 3643   dom cdm 4689    |` cres 4691   Rel wrel 4694   RRcr 8736   1c1 8738   2c2 9795   3c3 9796   6c6 9799   9c9 9802
This theorem is referenced by:  ex-ima  20829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808
  Copyright terms: Public domain W3C validator