MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-res Unicode version

Theorem ex-res 21597
Description: Example for df-res 4830. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-res  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  ( F  |`  B )  =  { <. 2 ,  6
>. } )

Proof of Theorem ex-res
StepHypRef Expression
1 simpl 444 . . . . 5  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  F  =  { <. 2 ,  6
>. ,  <. 3 ,  9 >. } )
2 df-pr 3764 . . . . 5  |-  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  =  ( {
<. 2 ,  6
>. }  u.  { <. 3 ,  9 >. } )
31, 2syl6eq 2435 . . . 4  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  F  =  ( { <. 2 ,  6 >. }  u.  { <. 3 ,  9 >. } ) )
43reseq1d 5085 . . 3  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  ( F  |`  B )  =  ( ( { <. 2 ,  6 >. }  u.  { <. 3 ,  9 >. } )  |`  B ) )
5 resundir 5101 . . 3  |-  ( ( { <. 2 ,  6
>. }  u.  { <. 3 ,  9 >. } )  |`  B )  =  ( ( {
<. 2 ,  6
>. }  |`  B )  u.  ( { <. 3 ,  9 >. }  |`  B ) )
64, 5syl6eq 2435 . 2  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  ( F  |`  B )  =  ( ( { <. 2 ,  6 >. }  |`  B )  u.  ( { <. 3 ,  9
>. }  |`  B )
) )
7 2re 10001 . . . . . . 7  |-  2  e.  RR
87elexi 2908 . . . . . 6  |-  2  e.  _V
9 6re 10008 . . . . . . 7  |-  6  e.  RR
109elexi 2908 . . . . . 6  |-  6  e.  _V
118, 10relsnop 4920 . . . . 5  |-  Rel  { <. 2 ,  6 >. }
12 dmsnopss 5282 . . . . . 6  |-  dom  { <. 2 ,  6 >. }  C_  { 2 }
13 snsspr2 3891 . . . . . . 7  |-  { 2 }  C_  { 1 ,  2 }
14 simpr 448 . . . . . . 7  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  B  =  { 1 ,  2 } )
1513, 14syl5sseqr 3340 . . . . . 6  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  { 2 }  C_  B )
1612, 15syl5ss 3302 . . . . 5  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  dom  {
<. 2 ,  6
>. }  C_  B )
17 relssres 5123 . . . . 5  |-  ( ( Rel  { <. 2 ,  6 >. }  /\  dom  { <. 2 ,  6
>. }  C_  B )  ->  ( { <. 2 ,  6 >. }  |`  B )  =  { <. 2 ,  6 >. } )
1811, 16, 17sylancr 645 . . . 4  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  ( { <. 2 ,  6
>. }  |`  B )  =  { <. 2 ,  6
>. } )
19 1re 9023 . . . . . . . 8  |-  1  e.  RR
20 1lt3 10076 . . . . . . . 8  |-  1  <  3
2119, 20gtneii 9116 . . . . . . 7  |-  3  =/=  1
22 2lt3 10075 . . . . . . . 8  |-  2  <  3
237, 22gtneii 9116 . . . . . . 7  |-  3  =/=  2
2421, 23nelpri 3778 . . . . . 6  |-  -.  3  e.  { 1 ,  2 }
2514eleq2d 2454 . . . . . 6  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  (
3  e.  B  <->  3  e.  { 1 ,  2 } ) )
2624, 25mtbiri 295 . . . . 5  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  -.  3  e.  B )
27 ressnop0 5852 . . . . 5  |-  ( -.  3  e.  B  -> 
( { <. 3 ,  9 >. }  |`  B )  =  (/) )
2826, 27syl 16 . . . 4  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  ( { <. 3 ,  9
>. }  |`  B )  =  (/) )
2918, 28uneq12d 3445 . . 3  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  (
( { <. 2 ,  6 >. }  |`  B )  u.  ( { <. 3 ,  9 >. }  |`  B ) )  =  ( { <. 2 ,  6 >. }  u.  (/) ) )
30 un0 3595 . . 3  |-  ( {
<. 2 ,  6
>. }  u.  (/) )  =  { <. 2 ,  6
>. }
3129, 30syl6eq 2435 . 2  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  (
( { <. 2 ,  6 >. }  |`  B )  u.  ( { <. 3 ,  9 >. }  |`  B ) )  =  { <. 2 ,  6
>. } )
326, 31eqtrd 2419 1  |-  ( ( F  =  { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  /\  B  =  { 1 ,  2 } )  ->  ( F  |`  B )  =  { <. 2 ,  6
>. } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    u. cun 3261    C_ wss 3263   (/)c0 3571   {csn 3757   {cpr 3758   <.cop 3760   dom cdm 4818    |` cres 4820   Rel wrel 4823   RRcr 8922   1c1 8924   2c2 9981   3c3 9982   6c6 9985   9c9 9988
This theorem is referenced by:  ex-ima  21598
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-po 4444  df-so 4445  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-riota 6485  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994
  Copyright terms: Public domain W3C validator