MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exdistr2 Structured version   Unicode version

Theorem exdistr2 1935
Description: Distribution of existential quantifiers. (Contributed by NM, 17-Mar-1995.)
Assertion
Ref Expression
exdistr2  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  E. x ( ph  /\ 
E. y E. z ps ) )
Distinct variable groups:    ph, y    ph, z
Allowed substitution hints:    ph( x)    ps( x, y, z)

Proof of Theorem exdistr2
StepHypRef Expression
1 19.42vv 1933 . 2  |-  ( E. y E. z (
ph  /\  ps )  <->  (
ph  /\  E. y E. z ps ) )
21exbii 1593 1  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  E. x ( ph  /\ 
E. y E. z ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360   E.wex 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-11 1763
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555
  Copyright terms: Public domain W3C validator