MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exdistrf Structured version   Unicode version

Theorem exdistrf 2066
Description: Distribution of existential quantifiers, with a bound-variable hypothesis saying that  y is not free in  ph, but  x can be free in  ph (and there is no distinct variable condition on  x and  y). (Contributed by Mario Carneiro, 20-Mar-2013.) (Proof shortened by Wolf Lammen, 14-May-2018.)
Hypothesis
Ref Expression
exdistrf.1  |-  ( -. 
A. x  x  =  y  ->  F/ y ph )
Assertion
Ref Expression
exdistrf  |-  ( E. x E. y (
ph  /\  ps )  ->  E. x ( ph  /\ 
E. y ps )
)

Proof of Theorem exdistrf
StepHypRef Expression
1 nfe1 1747 . 2  |-  F/ x E. x ( ph  /\  E. y ps )
2 19.8a 1762 . . . . . 6  |-  ( ps 
->  E. y ps )
32anim2i 553 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ph  /\  E. y ps ) )
43eximi 1585 . . . 4  |-  ( E. y ( ph  /\  ps )  ->  E. y
( ph  /\  E. y ps ) )
5 biidd 229 . . . . 5  |-  ( A. x  x  =  y  ->  ( ( ph  /\  E. y ps )  <->  ( ph  /\ 
E. y ps )
) )
65drex1 2059 . . . 4  |-  ( A. x  x  =  y  ->  ( E. x (
ph  /\  E. y ps )  <->  E. y ( ph  /\ 
E. y ps )
) )
74, 6syl5ibr 213 . . 3  |-  ( A. x  x  =  y  ->  ( E. y (
ph  /\  ps )  ->  E. x ( ph  /\ 
E. y ps )
) )
8 19.40 1619 . . . 4  |-  ( E. y ( ph  /\  ps )  ->  ( E. y ph  /\  E. y ps ) )
9 exdistrf.1 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  F/ y ph )
10919.9d 1796 . . . . 5  |-  ( -. 
A. x  x  =  y  ->  ( E. y ph  ->  ph ) )
1110anim1d 548 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( ( E. y ph  /\  E. y ps )  ->  ( ph  /\  E. y ps ) ) )
12 19.8a 1762 . . . 4  |-  ( (
ph  /\  E. y ps )  ->  E. x
( ph  /\  E. y ps ) )
138, 11, 12syl56 32 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( E. y ( ph  /\  ps )  ->  E. x
( ph  /\  E. y ps ) ) )
147, 13pm2.61i 158 . 2  |-  ( E. y ( ph  /\  ps )  ->  E. x
( ph  /\  E. y ps ) )
151, 14exlimi 1821 1  |-  ( E. x E. y (
ph  /\  ps )  ->  E. x ( ph  /\ 
E. y ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   A.wal 1549   E.wex 1550   F/wnf 1553
This theorem is referenced by:  oprabid  6105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554
  Copyright terms: Public domain W3C validator