Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidresid Unicode version

Theorem exidresid 26672
Description: The restriction of a binary operation with identity to a subset containing the identity has the same identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
exidres.1  |-  X  =  ran  G
exidres.2  |-  U  =  (GId `  G )
exidres.3  |-  H  =  ( G  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
exidresid  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X  /\  U  e.  Y )  /\  H  e.  Magma )  ->  (GId `  H )  =  U )

Proof of Theorem exidresid
Dummy variables  x  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exidres.3 . . . . . 6  |-  H  =  ( G  |`  ( Y  X.  Y ) )
2 resexg 5010 . . . . . 6  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  ( G  |`  ( Y  X.  Y
) )  e.  _V )
31, 2syl5eqel 2380 . . . . 5  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  H  e.  _V )
4 eqid 2296 . . . . . 6  |-  ran  H  =  ran  H
54gidval 20896 . . . . 5  |-  ( H  e.  _V  ->  (GId `  H )  =  (
iota_ u  e.  ran  H A. x  e.  ran  H ( ( u H x )  =  x  /\  ( x H u )  =  x ) ) )
63, 5syl 15 . . . 4  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  (GId `  H
)  =  ( iota_ u  e.  ran  H A. x  e.  ran  H ( ( u H x )  =  x  /\  ( x H u )  =  x ) ) )
763ad2ant1 976 . . 3  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  (GId `  H
)  =  ( iota_ u  e.  ran  H A. x  e.  ran  H ( ( u H x )  =  x  /\  ( x H u )  =  x ) ) )
87adantr 451 . 2  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X  /\  U  e.  Y )  /\  H  e.  Magma )  ->  (GId `  H )  =  (
iota_ u  e.  ran  H A. x  e.  ran  H ( ( u H x )  =  x  /\  ( x H u )  =  x ) ) )
9 exidres.1 . . . . . . 7  |-  X  =  ran  G
10 exidres.2 . . . . . . 7  |-  U  =  (GId `  G )
119, 10, 1exidreslem 26670 . . . . . 6  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  ( U  e.  dom  dom  H  /\  A. x  e.  dom  dom  H ( ( U H x )  =  x  /\  ( x H U )  =  x ) ) )
1211simprd 449 . . . . 5  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  A. x  e.  dom  dom  H (
( U H x )  =  x  /\  ( x H U )  =  x ) )
1312adantr 451 . . . 4  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X  /\  U  e.  Y )  /\  H  e.  Magma )  ->  A. x  e.  dom  dom  H (
( U H x )  =  x  /\  ( x H U )  =  x ) )
149, 10, 1exidres 26671 . . . . . 6  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  H  e.  ExId 
)
15 elin 3371 . . . . . . . 8  |-  ( H  e.  ( Magma  i^i  ExId  )  <-> 
( H  e.  Magma  /\  H  e.  ExId  )
)
16 rngopid 21006 . . . . . . . 8  |-  ( H  e.  ( Magma  i^i  ExId  )  ->  ran  H  =  dom  dom  H )
1715, 16sylbir 204 . . . . . . 7  |-  ( ( H  e.  Magma  /\  H  e.  ExId  )  ->  ran  H  =  dom  dom  H
)
1817ancoms 439 . . . . . 6  |-  ( ( H  e.  ExId  /\  H  e.  Magma )  ->  ran  H  =  dom  dom  H
)
1914, 18sylan 457 . . . . 5  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X  /\  U  e.  Y )  /\  H  e.  Magma )  ->  ran  H  =  dom  dom  H
)
2019raleqdv 2755 . . . 4  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X  /\  U  e.  Y )  /\  H  e.  Magma )  ->  ( A. x  e.  ran  H ( ( U H x )  =  x  /\  ( x H U )  =  x )  <->  A. x  e.  dom  dom 
H ( ( U H x )  =  x  /\  ( x H U )  =  x ) ) )
2113, 20mpbird 223 . . 3  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X  /\  U  e.  Y )  /\  H  e.  Magma )  ->  A. x  e.  ran  H ( ( U H x )  =  x  /\  (
x H U )  =  x ) )
2211simpld 445 . . . . . 6  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  U  e.  dom  dom  H )
2322adantr 451 . . . . 5  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X  /\  U  e.  Y )  /\  H  e.  Magma )  ->  U  e.  dom  dom  H )
2423, 19eleqtrrd 2373 . . . 4  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X  /\  U  e.  Y )  /\  H  e.  Magma )  ->  U  e.  ran  H )
254exidu1 21009 . . . . . . 7  |-  ( H  e.  ( Magma  i^i  ExId  )  ->  E! u  e. 
ran  H A. x  e.  ran  H ( ( u H x )  =  x  /\  (
x H u )  =  x ) )
2615, 25sylbir 204 . . . . . 6  |-  ( ( H  e.  Magma  /\  H  e.  ExId  )  ->  E! u  e.  ran  H A. x  e.  ran  H ( ( u H x )  =  x  /\  ( x H u )  =  x ) )
2726ancoms 439 . . . . 5  |-  ( ( H  e.  ExId  /\  H  e.  Magma )  ->  E! u  e.  ran  H A. x  e.  ran  H ( ( u H x )  =  x  /\  ( x H u )  =  x ) )
2814, 27sylan 457 . . . 4  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X  /\  U  e.  Y )  /\  H  e.  Magma )  ->  E! u  e.  ran  H A. x  e.  ran  H ( ( u H x )  =  x  /\  ( x H u )  =  x ) )
29 oveq1 5881 . . . . . . . 8  |-  ( u  =  U  ->  (
u H x )  =  ( U H x ) )
3029eqeq1d 2304 . . . . . . 7  |-  ( u  =  U  ->  (
( u H x )  =  x  <->  ( U H x )  =  x ) )
31 oveq2 5882 . . . . . . . 8  |-  ( u  =  U  ->  (
x H u )  =  ( x H U ) )
3231eqeq1d 2304 . . . . . . 7  |-  ( u  =  U  ->  (
( x H u )  =  x  <->  ( x H U )  =  x ) )
3330, 32anbi12d 691 . . . . . 6  |-  ( u  =  U  ->  (
( ( u H x )  =  x  /\  ( x H u )  =  x )  <->  ( ( U H x )  =  x  /\  ( x H U )  =  x ) ) )
3433ralbidv 2576 . . . . 5  |-  ( u  =  U  ->  ( A. x  e.  ran  H ( ( u H x )  =  x  /\  ( x H u )  =  x )  <->  A. x  e.  ran  H ( ( U H x )  =  x  /\  ( x H U )  =  x ) ) )
3534riota2 6343 . . . 4  |-  ( ( U  e.  ran  H  /\  E! u  e.  ran  H A. x  e.  ran  H ( ( u H x )  =  x  /\  ( x H u )  =  x ) )  ->  ( A. x  e.  ran  H ( ( U H x )  =  x  /\  ( x H U )  =  x )  <->  ( iota_ u  e. 
ran  H A. x  e.  ran  H ( ( u H x )  =  x  /\  (
x H u )  =  x ) )  =  U ) )
3624, 28, 35syl2anc 642 . . 3  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X  /\  U  e.  Y )  /\  H  e.  Magma )  ->  ( A. x  e.  ran  H ( ( U H x )  =  x  /\  ( x H U )  =  x )  <->  ( iota_ u  e. 
ran  H A. x  e.  ran  H ( ( u H x )  =  x  /\  (
x H u )  =  x ) )  =  U ) )
3721, 36mpbid 201 . 2  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X  /\  U  e.  Y )  /\  H  e.  Magma )  ->  ( iota_ u  e.  ran  H A. x  e.  ran  H ( ( u H x )  =  x  /\  ( x H u )  =  x ) )  =  U )
388, 37eqtrd 2328 1  |-  ( ( ( G  e.  (
Magma  i^i  ExId  )  /\  Y  C_  X  /\  U  e.  Y )  /\  H  e.  Magma )  ->  (GId `  H )  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E!wreu 2558   _Vcvv 2801    i^i cin 3164    C_ wss 3165    X. cxp 4703   dom cdm 4705   ran crn 4706    |` cres 4707   ` cfv 5271  (class class class)co 5874   iota_crio 6313  GIdcgi 20870    ExId cexid 20997   Magmacmagm 21001
This theorem is referenced by:  isdrngo2  26692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-ov 5877  df-riota 6320  df-gid 20875  df-exid 20998  df-mgm 21002
  Copyright terms: Public domain W3C validator