MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimih Unicode version

Theorem exlimih 1729
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypotheses
Ref Expression
exlimih.1  |-  ( ps 
->  A. x ps )
exlimih.2  |-  ( ph  ->  ps )
Assertion
Ref Expression
exlimih  |-  ( E. x ph  ->  ps )

Proof of Theorem exlimih
StepHypRef Expression
1 exlimih.1 . . 3  |-  ( ps 
->  A. x ps )
2119.23h 1728 . 2  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
3 exlimih.2 . 2  |-  ( ph  ->  ps )
42, 3mpgbi 1536 1  |-  ( E. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1527   E.wex 1528
This theorem is referenced by:  ax12olem5  1872  ax10lem2  1877  a16g  1885  ceqsex3OLD  26726  ax12OLD  29105  a12study5rev  29122  a12study10  29136  a12study10n  29137  a12study11  29138  a12study11n  29139
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-11 1715
This theorem depends on definitions:  df-bi 177  df-ex 1529
  Copyright terms: Public domain W3C validator