MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exmidd Unicode version

Theorem exmidd 405
Description: Law of excluded middle in a context. (Contributed by Mario Carneiro, 9-Feb-2017.)
Assertion
Ref Expression
exmidd  |-  ( ph  ->  ( ps  \/  -.  ps ) )

Proof of Theorem exmidd
StepHypRef Expression
1 exmid 404 . 2  |-  ( ps  \/  -.  ps )
21a1i 10 1  |-  ( ph  ->  ( ps  \/  -.  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357
This theorem is referenced by:  elpreq  23204  hashge1  23403  esumcst  23451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359
  Copyright terms: Public domain W3C validator