Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exopxfr Structured version   Unicode version

Theorem exopxfr 6413
 Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
exopxfr.1
Assertion
Ref Expression
exopxfr
Distinct variable groups:   ,,   ,   ,,
Allowed substitution hints:   ()   (,)

Proof of Theorem exopxfr
StepHypRef Expression
1 exopxfr.1 . . 3
21rexxp 5020 . 2
3 rexv 2972 . 2
4 rexv 2972 . . 3
54exbii 1593 . 2
62, 3, 53bitri 264 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wex 1551   wceq 1653  wrex 2708  cvv 2958  cop 3819   cxp 4879 This theorem is referenced by:  exopxfr2  6414 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-iun 4097  df-opab 4270  df-xp 4887  df-rel 4888
 Copyright terms: Public domain W3C validator